Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+16x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\times 2\left(-1\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 16 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 2\left(-1\right)}}{2\times 2}
Square 16.
x=\frac{-16±\sqrt{256-8\left(-1\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-16±\sqrt{256+8}}{2\times 2}
Multiply -8 times -1.
x=\frac{-16±\sqrt{264}}{2\times 2}
Add 256 to 8.
x=\frac{-16±2\sqrt{66}}{2\times 2}
Take the square root of 264.
x=\frac{-16±2\sqrt{66}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{66}-16}{4}
Now solve the equation x=\frac{-16±2\sqrt{66}}{4} when ± is plus. Add -16 to 2\sqrt{66}.
x=\frac{\sqrt{66}}{2}-4
Divide -16+2\sqrt{66} by 4.
x=\frac{-2\sqrt{66}-16}{4}
Now solve the equation x=\frac{-16±2\sqrt{66}}{4} when ± is minus. Subtract 2\sqrt{66} from -16.
x=-\frac{\sqrt{66}}{2}-4
Divide -16-2\sqrt{66} by 4.
x=\frac{\sqrt{66}}{2}-4 x=-\frac{\sqrt{66}}{2}-4
The equation is now solved.
2x^{2}+16x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+16x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
2x^{2}+16x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
2x^{2}+16x=1
Subtract -1 from 0.
\frac{2x^{2}+16x}{2}=\frac{1}{2}
Divide both sides by 2.
x^{2}+\frac{16}{2}x=\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+8x=\frac{1}{2}
Divide 16 by 2.
x^{2}+8x+4^{2}=\frac{1}{2}+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=\frac{1}{2}+16
Square 4.
x^{2}+8x+16=\frac{33}{2}
Add \frac{1}{2} to 16.
\left(x+4\right)^{2}=\frac{33}{2}
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{\frac{33}{2}}
Take the square root of both sides of the equation.
x+4=\frac{\sqrt{66}}{2} x+4=-\frac{\sqrt{66}}{2}
Simplify.
x=\frac{\sqrt{66}}{2}-4 x=-\frac{\sqrt{66}}{2}-4
Subtract 4 from both sides of the equation.