Factor
\left(x+7\right)\left(2x+1\right)
Evaluate
\left(x+7\right)\left(2x+1\right)
Graph
Share
Copied to clipboard
a+b=15 ab=2\times 7=14
Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx+7. To find a and b, set up a system to be solved.
1,14 2,7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 14.
1+14=15 2+7=9
Calculate the sum for each pair.
a=1 b=14
The solution is the pair that gives sum 15.
\left(2x^{2}+x\right)+\left(14x+7\right)
Rewrite 2x^{2}+15x+7 as \left(2x^{2}+x\right)+\left(14x+7\right).
x\left(2x+1\right)+7\left(2x+1\right)
Factor out x in the first and 7 in the second group.
\left(2x+1\right)\left(x+7\right)
Factor out common term 2x+1 by using distributive property.
2x^{2}+15x+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-15±\sqrt{15^{2}-4\times 2\times 7}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{225-4\times 2\times 7}}{2\times 2}
Square 15.
x=\frac{-15±\sqrt{225-8\times 7}}{2\times 2}
Multiply -4 times 2.
x=\frac{-15±\sqrt{225-56}}{2\times 2}
Multiply -8 times 7.
x=\frac{-15±\sqrt{169}}{2\times 2}
Add 225 to -56.
x=\frac{-15±13}{2\times 2}
Take the square root of 169.
x=\frac{-15±13}{4}
Multiply 2 times 2.
x=-\frac{2}{4}
Now solve the equation x=\frac{-15±13}{4} when ± is plus. Add -15 to 13.
x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{28}{4}
Now solve the equation x=\frac{-15±13}{4} when ± is minus. Subtract 13 from -15.
x=-7
Divide -28 by 4.
2x^{2}+15x+7=2\left(x-\left(-\frac{1}{2}\right)\right)\left(x-\left(-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{2} for x_{1} and -7 for x_{2}.
2x^{2}+15x+7=2\left(x+\frac{1}{2}\right)\left(x+7\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
2x^{2}+15x+7=2\times \frac{2x+1}{2}\left(x+7\right)
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
2x^{2}+15x+7=\left(2x+1\right)\left(x+7\right)
Cancel out 2, the greatest common factor in 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}