Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=-4
Graph
Share
Copied to clipboard
a+b=15 ab=2\times 28=56
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+28. To find a and b, set up a system to be solved.
1,56 2,28 4,14 7,8
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 56.
1+56=57 2+28=30 4+14=18 7+8=15
Calculate the sum for each pair.
a=7 b=8
The solution is the pair that gives sum 15.
\left(2x^{2}+7x\right)+\left(8x+28\right)
Rewrite 2x^{2}+15x+28 as \left(2x^{2}+7x\right)+\left(8x+28\right).
x\left(2x+7\right)+4\left(2x+7\right)
Factor out x in the first and 4 in the second group.
\left(2x+7\right)\left(x+4\right)
Factor out common term 2x+7 by using distributive property.
x=-\frac{7}{2} x=-4
To find equation solutions, solve 2x+7=0 and x+4=0.
2x^{2}+15x+28=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\times 2\times 28}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 15 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 2\times 28}}{2\times 2}
Square 15.
x=\frac{-15±\sqrt{225-8\times 28}}{2\times 2}
Multiply -4 times 2.
x=\frac{-15±\sqrt{225-224}}{2\times 2}
Multiply -8 times 28.
x=\frac{-15±\sqrt{1}}{2\times 2}
Add 225 to -224.
x=\frac{-15±1}{2\times 2}
Take the square root of 1.
x=\frac{-15±1}{4}
Multiply 2 times 2.
x=-\frac{14}{4}
Now solve the equation x=\frac{-15±1}{4} when ± is plus. Add -15 to 1.
x=-\frac{7}{2}
Reduce the fraction \frac{-14}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{16}{4}
Now solve the equation x=\frac{-15±1}{4} when ± is minus. Subtract 1 from -15.
x=-4
Divide -16 by 4.
x=-\frac{7}{2} x=-4
The equation is now solved.
2x^{2}+15x+28=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+15x+28-28=-28
Subtract 28 from both sides of the equation.
2x^{2}+15x=-28
Subtracting 28 from itself leaves 0.
\frac{2x^{2}+15x}{2}=-\frac{28}{2}
Divide both sides by 2.
x^{2}+\frac{15}{2}x=-\frac{28}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{15}{2}x=-14
Divide -28 by 2.
x^{2}+\frac{15}{2}x+\left(\frac{15}{4}\right)^{2}=-14+\left(\frac{15}{4}\right)^{2}
Divide \frac{15}{2}, the coefficient of the x term, by 2 to get \frac{15}{4}. Then add the square of \frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{15}{2}x+\frac{225}{16}=-14+\frac{225}{16}
Square \frac{15}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{15}{2}x+\frac{225}{16}=\frac{1}{16}
Add -14 to \frac{225}{16}.
\left(x+\frac{15}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}+\frac{15}{2}x+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x+\frac{15}{4}=\frac{1}{4} x+\frac{15}{4}=-\frac{1}{4}
Simplify.
x=-\frac{7}{2} x=-4
Subtract \frac{15}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}