Solve for n
n=\frac{5+\sqrt{15}i}{2}\approx 2.5+1.936491673i
n=\frac{-\sqrt{15}i+5}{2}\approx 2.5-1.936491673i
Share
Copied to clipboard
2n^{2}-10n+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 20}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -10 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 20}}{2\times 2}
Square -10.
n=\frac{-\left(-10\right)±\sqrt{100-8\times 20}}{2\times 2}
Multiply -4 times 2.
n=\frac{-\left(-10\right)±\sqrt{100-160}}{2\times 2}
Multiply -8 times 20.
n=\frac{-\left(-10\right)±\sqrt{-60}}{2\times 2}
Add 100 to -160.
n=\frac{-\left(-10\right)±2\sqrt{15}i}{2\times 2}
Take the square root of -60.
n=\frac{10±2\sqrt{15}i}{2\times 2}
The opposite of -10 is 10.
n=\frac{10±2\sqrt{15}i}{4}
Multiply 2 times 2.
n=\frac{10+2\sqrt{15}i}{4}
Now solve the equation n=\frac{10±2\sqrt{15}i}{4} when ± is plus. Add 10 to 2i\sqrt{15}.
n=\frac{5+\sqrt{15}i}{2}
Divide 10+2i\sqrt{15} by 4.
n=\frac{-2\sqrt{15}i+10}{4}
Now solve the equation n=\frac{10±2\sqrt{15}i}{4} when ± is minus. Subtract 2i\sqrt{15} from 10.
n=\frac{-\sqrt{15}i+5}{2}
Divide 10-2i\sqrt{15} by 4.
n=\frac{5+\sqrt{15}i}{2} n=\frac{-\sqrt{15}i+5}{2}
The equation is now solved.
2n^{2}-10n+20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2n^{2}-10n+20-20=-20
Subtract 20 from both sides of the equation.
2n^{2}-10n=-20
Subtracting 20 from itself leaves 0.
\frac{2n^{2}-10n}{2}=-\frac{20}{2}
Divide both sides by 2.
n^{2}+\left(-\frac{10}{2}\right)n=-\frac{20}{2}
Dividing by 2 undoes the multiplication by 2.
n^{2}-5n=-\frac{20}{2}
Divide -10 by 2.
n^{2}-5n=-10
Divide -20 by 2.
n^{2}-5n+\left(-\frac{5}{2}\right)^{2}=-10+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-5n+\frac{25}{4}=-10+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-5n+\frac{25}{4}=-\frac{15}{4}
Add -10 to \frac{25}{4}.
\left(n-\frac{5}{2}\right)^{2}=-\frac{15}{4}
Factor n^{2}-5n+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{15}{4}}
Take the square root of both sides of the equation.
n-\frac{5}{2}=\frac{\sqrt{15}i}{2} n-\frac{5}{2}=-\frac{\sqrt{15}i}{2}
Simplify.
n=\frac{5+\sqrt{15}i}{2} n=\frac{-\sqrt{15}i+5}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}