Solve for R
R=\sqrt{263}+5\approx 21.21727474
R=5-\sqrt{263}\approx -11.21727474
Share
Copied to clipboard
2R^{2}-20R-476=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
R=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 2\left(-476\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -20 for b, and -476 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
R=\frac{-\left(-20\right)±\sqrt{400-4\times 2\left(-476\right)}}{2\times 2}
Square -20.
R=\frac{-\left(-20\right)±\sqrt{400-8\left(-476\right)}}{2\times 2}
Multiply -4 times 2.
R=\frac{-\left(-20\right)±\sqrt{400+3808}}{2\times 2}
Multiply -8 times -476.
R=\frac{-\left(-20\right)±\sqrt{4208}}{2\times 2}
Add 400 to 3808.
R=\frac{-\left(-20\right)±4\sqrt{263}}{2\times 2}
Take the square root of 4208.
R=\frac{20±4\sqrt{263}}{2\times 2}
The opposite of -20 is 20.
R=\frac{20±4\sqrt{263}}{4}
Multiply 2 times 2.
R=\frac{4\sqrt{263}+20}{4}
Now solve the equation R=\frac{20±4\sqrt{263}}{4} when ± is plus. Add 20 to 4\sqrt{263}.
R=\sqrt{263}+5
Divide 20+4\sqrt{263} by 4.
R=\frac{20-4\sqrt{263}}{4}
Now solve the equation R=\frac{20±4\sqrt{263}}{4} when ± is minus. Subtract 4\sqrt{263} from 20.
R=5-\sqrt{263}
Divide 20-4\sqrt{263} by 4.
R=\sqrt{263}+5 R=5-\sqrt{263}
The equation is now solved.
2R^{2}-20R-476=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2R^{2}-20R-476-\left(-476\right)=-\left(-476\right)
Add 476 to both sides of the equation.
2R^{2}-20R=-\left(-476\right)
Subtracting -476 from itself leaves 0.
2R^{2}-20R=476
Subtract -476 from 0.
\frac{2R^{2}-20R}{2}=\frac{476}{2}
Divide both sides by 2.
R^{2}+\left(-\frac{20}{2}\right)R=\frac{476}{2}
Dividing by 2 undoes the multiplication by 2.
R^{2}-10R=\frac{476}{2}
Divide -20 by 2.
R^{2}-10R=238
Divide 476 by 2.
R^{2}-10R+\left(-5\right)^{2}=238+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
R^{2}-10R+25=238+25
Square -5.
R^{2}-10R+25=263
Add 238 to 25.
\left(R-5\right)^{2}=263
Factor R^{2}-10R+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(R-5\right)^{2}}=\sqrt{263}
Take the square root of both sides of the equation.
R-5=\sqrt{263} R-5=-\sqrt{263}
Simplify.
R=\sqrt{263}+5 R=5-\sqrt{263}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}