Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

2\left(a^{2}+2ab+b^{2}\right)+\left(a+b\right)\left(a-b\right)-6\left(a-b\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
2a^{2}+4ab+2b^{2}+\left(a+b\right)\left(a-b\right)-6\left(a-b\right)^{2}
Use the distributive property to multiply 2 by a^{2}+2ab+b^{2}.
2a^{2}+4ab+2b^{2}+a^{2}-b^{2}-6\left(a-b\right)^{2}
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3a^{2}+4ab+2b^{2}-b^{2}-6\left(a-b\right)^{2}
Combine 2a^{2} and a^{2} to get 3a^{2}.
3a^{2}+4ab+b^{2}-6\left(a-b\right)^{2}
Combine 2b^{2} and -b^{2} to get b^{2}.
3a^{2}+4ab+b^{2}-6\left(a^{2}-2ab+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
3a^{2}+4ab+b^{2}-6a^{2}+12ab-6b^{2}
Use the distributive property to multiply -6 by a^{2}-2ab+b^{2}.
-3a^{2}+4ab+b^{2}+12ab-6b^{2}
Combine 3a^{2} and -6a^{2} to get -3a^{2}.
-3a^{2}+16ab+b^{2}-6b^{2}
Combine 4ab and 12ab to get 16ab.
-3a^{2}+16ab-5b^{2}
Combine b^{2} and -6b^{2} to get -5b^{2}.
2\left(a^{2}+2ab+b^{2}\right)+\left(a+b\right)\left(a-b\right)-6\left(a-b\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
2a^{2}+4ab+2b^{2}+\left(a+b\right)\left(a-b\right)-6\left(a-b\right)^{2}
Use the distributive property to multiply 2 by a^{2}+2ab+b^{2}.
2a^{2}+4ab+2b^{2}+a^{2}-b^{2}-6\left(a-b\right)^{2}
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3a^{2}+4ab+2b^{2}-b^{2}-6\left(a-b\right)^{2}
Combine 2a^{2} and a^{2} to get 3a^{2}.
3a^{2}+4ab+b^{2}-6\left(a-b\right)^{2}
Combine 2b^{2} and -b^{2} to get b^{2}.
3a^{2}+4ab+b^{2}-6\left(a^{2}-2ab+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
3a^{2}+4ab+b^{2}-6a^{2}+12ab-6b^{2}
Use the distributive property to multiply -6 by a^{2}-2ab+b^{2}.
-3a^{2}+4ab+b^{2}+12ab-6b^{2}
Combine 3a^{2} and -6a^{2} to get -3a^{2}.
-3a^{2}+16ab+b^{2}-6b^{2}
Combine 4ab and 12ab to get 16ab.
-3a^{2}+16ab-5b^{2}
Combine b^{2} and -6b^{2} to get -5b^{2}.