Solve for k
k = \frac{\sqrt{8077} - 3}{2} \approx 43.436065693
k=\frac{-\sqrt{8077}-3}{2}\approx -46.436065693
Share
Copied to clipboard
4034=2k^{2}+6k
Multiply 2 and 2017 to get 4034.
2k^{2}+6k=4034
Swap sides so that all variable terms are on the left hand side.
2k^{2}+6k-4034=0
Subtract 4034 from both sides.
k=\frac{-6±\sqrt{6^{2}-4\times 2\left(-4034\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 6 for b, and -4034 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-6±\sqrt{36-4\times 2\left(-4034\right)}}{2\times 2}
Square 6.
k=\frac{-6±\sqrt{36-8\left(-4034\right)}}{2\times 2}
Multiply -4 times 2.
k=\frac{-6±\sqrt{36+32272}}{2\times 2}
Multiply -8 times -4034.
k=\frac{-6±\sqrt{32308}}{2\times 2}
Add 36 to 32272.
k=\frac{-6±2\sqrt{8077}}{2\times 2}
Take the square root of 32308.
k=\frac{-6±2\sqrt{8077}}{4}
Multiply 2 times 2.
k=\frac{2\sqrt{8077}-6}{4}
Now solve the equation k=\frac{-6±2\sqrt{8077}}{4} when ± is plus. Add -6 to 2\sqrt{8077}.
k=\frac{\sqrt{8077}-3}{2}
Divide -6+2\sqrt{8077} by 4.
k=\frac{-2\sqrt{8077}-6}{4}
Now solve the equation k=\frac{-6±2\sqrt{8077}}{4} when ± is minus. Subtract 2\sqrt{8077} from -6.
k=\frac{-\sqrt{8077}-3}{2}
Divide -6-2\sqrt{8077} by 4.
k=\frac{\sqrt{8077}-3}{2} k=\frac{-\sqrt{8077}-3}{2}
The equation is now solved.
4034=2k^{2}+6k
Multiply 2 and 2017 to get 4034.
2k^{2}+6k=4034
Swap sides so that all variable terms are on the left hand side.
\frac{2k^{2}+6k}{2}=\frac{4034}{2}
Divide both sides by 2.
k^{2}+\frac{6}{2}k=\frac{4034}{2}
Dividing by 2 undoes the multiplication by 2.
k^{2}+3k=\frac{4034}{2}
Divide 6 by 2.
k^{2}+3k=2017
Divide 4034 by 2.
k^{2}+3k+\left(\frac{3}{2}\right)^{2}=2017+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+3k+\frac{9}{4}=2017+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
k^{2}+3k+\frac{9}{4}=\frac{8077}{4}
Add 2017 to \frac{9}{4}.
\left(k+\frac{3}{2}\right)^{2}=\frac{8077}{4}
Factor k^{2}+3k+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{3}{2}\right)^{2}}=\sqrt{\frac{8077}{4}}
Take the square root of both sides of the equation.
k+\frac{3}{2}=\frac{\sqrt{8077}}{2} k+\frac{3}{2}=-\frac{\sqrt{8077}}{2}
Simplify.
k=\frac{\sqrt{8077}-3}{2} k=\frac{-\sqrt{8077}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}