Solve for y
y = \frac{5 \sqrt{12641} - 5}{316} \approx 1.76316775
y=\frac{-5\sqrt{12641}-5}{316}\approx -1.79481332
Graph
Share
Copied to clipboard
2\times 15.8y^{2}=100-y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y^{2}.
31.6y^{2}=100-y
Multiply 2 and 15.8 to get 31.6.
31.6y^{2}-100=-y
Subtract 100 from both sides.
31.6y^{2}-100+y=0
Add y to both sides.
31.6y^{2}+y-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-1±\sqrt{1^{2}-4\times 31.6\left(-100\right)}}{2\times 31.6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 31.6 for a, 1 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\times 31.6\left(-100\right)}}{2\times 31.6}
Square 1.
y=\frac{-1±\sqrt{1-126.4\left(-100\right)}}{2\times 31.6}
Multiply -4 times 31.6.
y=\frac{-1±\sqrt{1+12640}}{2\times 31.6}
Multiply -126.4 times -100.
y=\frac{-1±\sqrt{12641}}{2\times 31.6}
Add 1 to 12640.
y=\frac{-1±\sqrt{12641}}{63.2}
Multiply 2 times 31.6.
y=\frac{\sqrt{12641}-1}{63.2}
Now solve the equation y=\frac{-1±\sqrt{12641}}{63.2} when ± is plus. Add -1 to \sqrt{12641}.
y=\frac{5\sqrt{12641}-5}{316}
Divide -1+\sqrt{12641} by 63.2 by multiplying -1+\sqrt{12641} by the reciprocal of 63.2.
y=\frac{-\sqrt{12641}-1}{63.2}
Now solve the equation y=\frac{-1±\sqrt{12641}}{63.2} when ± is minus. Subtract \sqrt{12641} from -1.
y=\frac{-5\sqrt{12641}-5}{316}
Divide -1-\sqrt{12641} by 63.2 by multiplying -1-\sqrt{12641} by the reciprocal of 63.2.
y=\frac{5\sqrt{12641}-5}{316} y=\frac{-5\sqrt{12641}-5}{316}
The equation is now solved.
2\times 15.8y^{2}=100-y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y^{2}.
31.6y^{2}=100-y
Multiply 2 and 15.8 to get 31.6.
31.6y^{2}+y=100
Add y to both sides.
\frac{31.6y^{2}+y}{31.6}=\frac{100}{31.6}
Divide both sides of the equation by 31.6, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\frac{1}{31.6}y=\frac{100}{31.6}
Dividing by 31.6 undoes the multiplication by 31.6.
y^{2}+\frac{5}{158}y=\frac{100}{31.6}
Divide 1 by 31.6 by multiplying 1 by the reciprocal of 31.6.
y^{2}+\frac{5}{158}y=\frac{250}{79}
Divide 100 by 31.6 by multiplying 100 by the reciprocal of 31.6.
y^{2}+\frac{5}{158}y+\frac{5}{316}^{2}=\frac{250}{79}+\frac{5}{316}^{2}
Divide \frac{5}{158}, the coefficient of the x term, by 2 to get \frac{5}{316}. Then add the square of \frac{5}{316} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{5}{158}y+\frac{25}{99856}=\frac{250}{79}+\frac{25}{99856}
Square \frac{5}{316} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{5}{158}y+\frac{25}{99856}=\frac{316025}{99856}
Add \frac{250}{79} to \frac{25}{99856} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{5}{316}\right)^{2}=\frac{316025}{99856}
Factor y^{2}+\frac{5}{158}y+\frac{25}{99856}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{5}{316}\right)^{2}}=\sqrt{\frac{316025}{99856}}
Take the square root of both sides of the equation.
y+\frac{5}{316}=\frac{5\sqrt{12641}}{316} y+\frac{5}{316}=-\frac{5\sqrt{12641}}{316}
Simplify.
y=\frac{5\sqrt{12641}-5}{316} y=\frac{-5\sqrt{12641}-5}{316}
Subtract \frac{5}{316} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}