Solve for g
g=\frac{200}{\alpha +349600}
\alpha \neq -349600
Solve for α
\alpha =-349600+\frac{200}{g}
g\neq 0
Share
Copied to clipboard
2\times 100000=10^{3}g\left(\alpha +0.3496\times 10^{6}\right)
Calculate 10 to the power of 5 and get 100000.
2\times 100000=1000g\left(\alpha +0.3496\times 10^{6}\right)
Calculate 10 to the power of 3 and get 1000.
2\times 100000=1000g\left(\alpha +0.3496\times 1000000\right)
Calculate 10 to the power of 6 and get 1000000.
2\times 100000=1000g\alpha +1000g\left(0.3496\times 1000000\right)
Use the distributive property to multiply 1000g by \alpha +0.3496\times 1000000.
1000g\alpha +1000g\left(0.3496\times 1000000\right)=2\times 100000
Swap sides so that all variable terms are on the left hand side.
\left(1000\alpha +1000\left(0.3496\times 1000000\right)\right)g=2\times 100000
Combine all terms containing g.
\left(1000\alpha +349600000\right)g=200000
The equation is in standard form.
\frac{\left(1000\alpha +349600000\right)g}{1000\alpha +349600000}=\frac{200000}{1000\alpha +349600000}
Divide both sides by 1000\alpha +349600000.
g=\frac{200000}{1000\alpha +349600000}
Dividing by 1000\alpha +349600000 undoes the multiplication by 1000\alpha +349600000.
g=\frac{200}{\alpha +349600}
Divide 200000 by 1000\alpha +349600000.
2\times 100000=10^{3}g\left(\alpha +0.3496\times 10^{6}\right)
Calculate 10 to the power of 5 and get 100000.
2\times 100000=1000g\left(\alpha +0.3496\times 10^{6}\right)
Calculate 10 to the power of 3 and get 1000.
2\times 100000=1000g\left(\alpha +0.3496\times 1000000\right)
Calculate 10 to the power of 6 and get 1000000.
2\times 100000=1000g\alpha +1000g\left(0.3496\times 1000000\right)
Use the distributive property to multiply 1000g by \alpha +0.3496\times 1000000.
1000g\alpha +1000g\left(0.3496\times 1000000\right)=2\times 100000
Swap sides so that all variable terms are on the left hand side.
1000g\alpha =2\times 100000-1000g\left(0.3496\times 1000000\right)
Subtract 1000g\left(0.3496\times 1000000\right) from both sides.
1000g\alpha =200000-349600000g
The equation is in standard form.
\frac{1000g\alpha }{1000g}=\frac{200000-349600000g}{1000g}
Divide both sides by 1000g.
\alpha =\frac{200000-349600000g}{1000g}
Dividing by 1000g undoes the multiplication by 1000g.
\alpha =-349600+\frac{200}{g}
Divide 200000-349600000g by 1000g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}