Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-4-2=\left(x+3\right)^{2}
Use the distributive property to multiply 2 by x-2.
2x-6=\left(x+3\right)^{2}
Subtract 2 from -4 to get -6.
2x-6=x^{2}+6x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x-6-x^{2}=6x+9
Subtract x^{2} from both sides.
2x-6-x^{2}-6x=9
Subtract 6x from both sides.
-4x-6-x^{2}=9
Combine 2x and -6x to get -4x.
-4x-6-x^{2}-9=0
Subtract 9 from both sides.
-4x-15-x^{2}=0
Subtract 9 from -6 to get -15.
-x^{2}-4x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\left(-15\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\left(-15\right)}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\left(-15\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16-60}}{2\left(-1\right)}
Multiply 4 times -15.
x=\frac{-\left(-4\right)±\sqrt{-44}}{2\left(-1\right)}
Add 16 to -60.
x=\frac{-\left(-4\right)±2\sqrt{11}i}{2\left(-1\right)}
Take the square root of -44.
x=\frac{4±2\sqrt{11}i}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{11}i}{-2}
Multiply 2 times -1.
x=\frac{4+2\sqrt{11}i}{-2}
Now solve the equation x=\frac{4±2\sqrt{11}i}{-2} when ± is plus. Add 4 to 2i\sqrt{11}.
x=-\sqrt{11}i-2
Divide 4+2i\sqrt{11} by -2.
x=\frac{-2\sqrt{11}i+4}{-2}
Now solve the equation x=\frac{4±2\sqrt{11}i}{-2} when ± is minus. Subtract 2i\sqrt{11} from 4.
x=-2+\sqrt{11}i
Divide 4-2i\sqrt{11} by -2.
x=-\sqrt{11}i-2 x=-2+\sqrt{11}i
The equation is now solved.
2x-4-2=\left(x+3\right)^{2}
Use the distributive property to multiply 2 by x-2.
2x-6=\left(x+3\right)^{2}
Subtract 2 from -4 to get -6.
2x-6=x^{2}+6x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x-6-x^{2}=6x+9
Subtract x^{2} from both sides.
2x-6-x^{2}-6x=9
Subtract 6x from both sides.
-4x-6-x^{2}=9
Combine 2x and -6x to get -4x.
-4x-x^{2}=9+6
Add 6 to both sides.
-4x-x^{2}=15
Add 9 and 6 to get 15.
-x^{2}-4x=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-4x}{-1}=\frac{15}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{4}{-1}\right)x=\frac{15}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+4x=\frac{15}{-1}
Divide -4 by -1.
x^{2}+4x=-15
Divide 15 by -1.
x^{2}+4x+2^{2}=-15+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-15+4
Square 2.
x^{2}+4x+4=-11
Add -15 to 4.
\left(x+2\right)^{2}=-11
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-11}
Take the square root of both sides of the equation.
x+2=\sqrt{11}i x+2=-\sqrt{11}i
Simplify.
x=-2+\sqrt{11}i x=-\sqrt{11}i-2
Subtract 2 from both sides of the equation.