Evaluate
451-108x
Differentiate w.r.t. x
-108
Graph
Share
Copied to clipboard
12\times 6\times 6-3x\times 6^{2}+4\times 6-5
Multiply 2 and 6 to get 12.
72\times 6-3x\times 6^{2}+4\times 6-5
Multiply 12 and 6 to get 72.
432-3x\times 6^{2}+4\times 6-5
Multiply 72 and 6 to get 432.
432-3x\times 36+4\times 6-5
Calculate 6 to the power of 2 and get 36.
432-108x+4\times 6-5
Multiply 3 and 36 to get 108.
432-108x+24-5
Multiply 4 and 6 to get 24.
456-108x-5
Add 432 and 24 to get 456.
451-108x
Subtract 5 from 456 to get 451.
\frac{\mathrm{d}}{\mathrm{d}x}(12\times 6\times 6-3x\times 6^{2}+4\times 6-5)
Multiply 2 and 6 to get 12.
\frac{\mathrm{d}}{\mathrm{d}x}(72\times 6-3x\times 6^{2}+4\times 6-5)
Multiply 12 and 6 to get 72.
\frac{\mathrm{d}}{\mathrm{d}x}(432-3x\times 6^{2}+4\times 6-5)
Multiply 72 and 6 to get 432.
\frac{\mathrm{d}}{\mathrm{d}x}(432-3x\times 36+4\times 6-5)
Calculate 6 to the power of 2 and get 36.
\frac{\mathrm{d}}{\mathrm{d}x}(432-108x+4\times 6-5)
Multiply 3 and 36 to get 108.
\frac{\mathrm{d}}{\mathrm{d}x}(432-108x+24-5)
Multiply 4 and 6 to get 24.
\frac{\mathrm{d}}{\mathrm{d}x}(456-108x-5)
Add 432 and 24 to get 456.
\frac{\mathrm{d}}{\mathrm{d}x}(451-108x)
Subtract 5 from 456 to get 451.
-108x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-108x^{0}
Subtract 1 from 1.
-108
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}