Solve for θ
\theta =\frac{2720}{97}\approx 28.041237113
Graph
Share
Copied to clipboard
2\theta =\frac{17}{25}\left(\frac{9}{5}\theta +32\right)
Reduce the fraction \frac{68}{100} to lowest terms by extracting and canceling out 4.
2\theta =\frac{17}{25}\times \frac{9}{5}\theta +\frac{17}{25}\times 32
Use the distributive property to multiply \frac{17}{25} by \frac{9}{5}\theta +32.
2\theta =\frac{17\times 9}{25\times 5}\theta +\frac{17}{25}\times 32
Multiply \frac{17}{25} times \frac{9}{5} by multiplying numerator times numerator and denominator times denominator.
2\theta =\frac{153}{125}\theta +\frac{17}{25}\times 32
Do the multiplications in the fraction \frac{17\times 9}{25\times 5}.
2\theta =\frac{153}{125}\theta +\frac{17\times 32}{25}
Express \frac{17}{25}\times 32 as a single fraction.
2\theta =\frac{153}{125}\theta +\frac{544}{25}
Multiply 17 and 32 to get 544.
2\theta -\frac{153}{125}\theta =\frac{544}{25}
Subtract \frac{153}{125}\theta from both sides.
\frac{97}{125}\theta =\frac{544}{25}
Combine 2\theta and -\frac{153}{125}\theta to get \frac{97}{125}\theta .
\theta =\frac{544}{25}\times \frac{125}{97}
Multiply both sides by \frac{125}{97}, the reciprocal of \frac{97}{125}.
\theta =\frac{544\times 125}{25\times 97}
Multiply \frac{544}{25} times \frac{125}{97} by multiplying numerator times numerator and denominator times denominator.
\theta =\frac{68000}{2425}
Do the multiplications in the fraction \frac{544\times 125}{25\times 97}.
\theta =\frac{2720}{97}
Reduce the fraction \frac{68000}{2425} to lowest terms by extracting and canceling out 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}