Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\times 4\sqrt{2}-5\sqrt{\frac{1}{2}}+6\sqrt{\frac{1}{8}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
8\sqrt{2}-5\sqrt{\frac{1}{2}}+6\sqrt{\frac{1}{8}}
Multiply 2 and 4 to get 8.
8\sqrt{2}-5\times \frac{\sqrt{1}}{\sqrt{2}}+6\sqrt{\frac{1}{8}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
8\sqrt{2}-5\times \frac{1}{\sqrt{2}}+6\sqrt{\frac{1}{8}}
Calculate the square root of 1 and get 1.
8\sqrt{2}-5\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+6\sqrt{\frac{1}{8}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
8\sqrt{2}-5\times \frac{\sqrt{2}}{2}+6\sqrt{\frac{1}{8}}
The square of \sqrt{2} is 2.
8\sqrt{2}+\frac{-5\sqrt{2}}{2}+6\sqrt{\frac{1}{8}}
Express -5\times \frac{\sqrt{2}}{2} as a single fraction.
8\sqrt{2}+\frac{-5\sqrt{2}}{2}+6\times \frac{\sqrt{1}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
8\sqrt{2}+\frac{-5\sqrt{2}}{2}+6\times \frac{1}{\sqrt{8}}
Calculate the square root of 1 and get 1.
8\sqrt{2}+\frac{-5\sqrt{2}}{2}+6\times \frac{1}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
8\sqrt{2}+\frac{-5\sqrt{2}}{2}+6\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
8\sqrt{2}+\frac{-5\sqrt{2}}{2}+6\times \frac{\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
8\sqrt{2}+\frac{-5\sqrt{2}}{2}+6\times \frac{\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
8\sqrt{2}+\frac{-5\sqrt{2}}{2}+\frac{6\sqrt{2}}{4}
Express 6\times \frac{\sqrt{2}}{4} as a single fraction.
\frac{19}{2}\sqrt{2}+\frac{-5\sqrt{2}}{2}
Combine 8\sqrt{2} and \frac{6\sqrt{2}}{4} to get \frac{19}{2}\sqrt{2}.
7\sqrt{2}
Combine \frac{19}{2}\sqrt{2} and \frac{-5\sqrt{2}}{2} to get 7\sqrt{2}.