Solve for x
x=-1
Graph
Share
Copied to clipboard
\left(2\sqrt{2-7x}\right)^{2}=\left(\sqrt{-36x}\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{2-7x}\right)^{2}=\left(\sqrt{-36x}\right)^{2}
Expand \left(2\sqrt{2-7x}\right)^{2}.
4\left(\sqrt{2-7x}\right)^{2}=\left(\sqrt{-36x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(2-7x\right)=\left(\sqrt{-36x}\right)^{2}
Calculate \sqrt{2-7x} to the power of 2 and get 2-7x.
8-28x=\left(\sqrt{-36x}\right)^{2}
Use the distributive property to multiply 4 by 2-7x.
8-28x=-36x
Calculate \sqrt{-36x} to the power of 2 and get -36x.
8-28x+36x=0
Add 36x to both sides.
8+8x=0
Combine -28x and 36x to get 8x.
8x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-8}{8}
Divide both sides by 8.
x=-1
Divide -8 by 8 to get -1.
2\sqrt{2-7\left(-1\right)}=\sqrt{-36\left(-1\right)}
Substitute -1 for x in the equation 2\sqrt{2-7x}=\sqrt{-36x}.
6=6
Simplify. The value x=-1 satisfies the equation.
x=-1
Equation 2\sqrt{2-7x}=\sqrt{-36x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}