Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\sqrt{x^{2}-1}=x
Subtract -x from both sides of the equation.
\left(2\sqrt{x^{2}-1}\right)^{2}=x^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x^{2}-1}\right)^{2}=x^{2}
Expand \left(2\sqrt{x^{2}-1}\right)^{2}.
4\left(\sqrt{x^{2}-1}\right)^{2}=x^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x^{2}-1\right)=x^{2}
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
4x^{2}-4=x^{2}
Use the distributive property to multiply 4 by x^{2}-1.
4x^{2}-4-x^{2}=0
Subtract x^{2} from both sides.
3x^{2}-4=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}=4
Add 4 to both sides. Anything plus zero gives itself.
x^{2}=\frac{4}{3}
Divide both sides by 3.
x=\frac{2\sqrt{3}}{3} x=-\frac{2\sqrt{3}}{3}
Take the square root of both sides of the equation.
2\sqrt{\left(\frac{2\sqrt{3}}{3}\right)^{2}-1}-\frac{2\sqrt{3}}{3}=0
Substitute \frac{2\sqrt{3}}{3} for x in the equation 2\sqrt{x^{2}-1}-x=0.
0=0
Simplify. The value x=\frac{2\sqrt{3}}{3} satisfies the equation.
2\sqrt{\left(-\frac{2\sqrt{3}}{3}\right)^{2}-1}-\left(-\frac{2\sqrt{3}}{3}\right)=0
Substitute -\frac{2\sqrt{3}}{3} for x in the equation 2\sqrt{x^{2}-1}-x=0.
\frac{4}{3}\times 3^{\frac{1}{2}}=0
Simplify. The value x=-\frac{2\sqrt{3}}{3} does not satisfy the equation.
x=\frac{2\sqrt{3}}{3}
Equation 2\sqrt{x^{2}-1}=x has a unique solution.