Solve for x
x=4
Graph
Share
Copied to clipboard
\left(2\sqrt{x+5}\right)^{2}=\left(x+2\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x+5}\right)^{2}=\left(x+2\right)^{2}
Expand \left(2\sqrt{x+5}\right)^{2}.
4\left(\sqrt{x+5}\right)^{2}=\left(x+2\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x+5\right)=\left(x+2\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
4x+20=\left(x+2\right)^{2}
Use the distributive property to multiply 4 by x+5.
4x+20=x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
4x+20-x^{2}=4x+4
Subtract x^{2} from both sides.
4x+20-x^{2}-4x=4
Subtract 4x from both sides.
20-x^{2}=4
Combine 4x and -4x to get 0.
-x^{2}=4-20
Subtract 20 from both sides.
-x^{2}=-16
Subtract 20 from 4 to get -16.
x^{2}=\frac{-16}{-1}
Divide both sides by -1.
x^{2}=16
Fraction \frac{-16}{-1} can be simplified to 16 by removing the negative sign from both the numerator and the denominator.
x=4 x=-4
Take the square root of both sides of the equation.
2\sqrt{4+5}=4+2
Substitute 4 for x in the equation 2\sqrt{x+5}=x+2.
6=6
Simplify. The value x=4 satisfies the equation.
2\sqrt{-4+5}=-4+2
Substitute -4 for x in the equation 2\sqrt{x+5}=x+2.
2=-2
Simplify. The value x=-4 does not satisfy the equation because the left and the right hand side have opposite signs.
x=4
Equation 2\sqrt{x+5}=x+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}