Solve for x
x=6
Graph
Share
Copied to clipboard
2\sqrt{7-x}=11-3\sqrt{2x-3}
Subtract 3\sqrt{2x-3} from both sides of the equation.
\left(2\sqrt{7-x}\right)^{2}=\left(11-3\sqrt{2x-3}\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{7-x}\right)^{2}=\left(11-3\sqrt{2x-3}\right)^{2}
Expand \left(2\sqrt{7-x}\right)^{2}.
4\left(\sqrt{7-x}\right)^{2}=\left(11-3\sqrt{2x-3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(7-x\right)=\left(11-3\sqrt{2x-3}\right)^{2}
Calculate \sqrt{7-x} to the power of 2 and get 7-x.
28-4x=\left(11-3\sqrt{2x-3}\right)^{2}
Use the distributive property to multiply 4 by 7-x.
28-4x=121-66\sqrt{2x-3}+9\left(\sqrt{2x-3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(11-3\sqrt{2x-3}\right)^{2}.
28-4x=121-66\sqrt{2x-3}+9\left(2x-3\right)
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
28-4x=121-66\sqrt{2x-3}+18x-27
Use the distributive property to multiply 9 by 2x-3.
28-4x=94-66\sqrt{2x-3}+18x
Subtract 27 from 121 to get 94.
28-4x-\left(94+18x\right)=-66\sqrt{2x-3}
Subtract 94+18x from both sides of the equation.
28-4x-94-18x=-66\sqrt{2x-3}
To find the opposite of 94+18x, find the opposite of each term.
-66-4x-18x=-66\sqrt{2x-3}
Subtract 94 from 28 to get -66.
-66-22x=-66\sqrt{2x-3}
Combine -4x and -18x to get -22x.
\left(-66-22x\right)^{2}=\left(-66\sqrt{2x-3}\right)^{2}
Square both sides of the equation.
4356+2904x+484x^{2}=\left(-66\sqrt{2x-3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-66-22x\right)^{2}.
4356+2904x+484x^{2}=\left(-66\right)^{2}\left(\sqrt{2x-3}\right)^{2}
Expand \left(-66\sqrt{2x-3}\right)^{2}.
4356+2904x+484x^{2}=4356\left(\sqrt{2x-3}\right)^{2}
Calculate -66 to the power of 2 and get 4356.
4356+2904x+484x^{2}=4356\left(2x-3\right)
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
4356+2904x+484x^{2}=8712x-13068
Use the distributive property to multiply 4356 by 2x-3.
4356+2904x+484x^{2}-8712x=-13068
Subtract 8712x from both sides.
4356-5808x+484x^{2}=-13068
Combine 2904x and -8712x to get -5808x.
4356-5808x+484x^{2}+13068=0
Add 13068 to both sides.
17424-5808x+484x^{2}=0
Add 4356 and 13068 to get 17424.
484x^{2}-5808x+17424=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5808\right)±\sqrt{\left(-5808\right)^{2}-4\times 484\times 17424}}{2\times 484}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 484 for a, -5808 for b, and 17424 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5808\right)±\sqrt{33732864-4\times 484\times 17424}}{2\times 484}
Square -5808.
x=\frac{-\left(-5808\right)±\sqrt{33732864-1936\times 17424}}{2\times 484}
Multiply -4 times 484.
x=\frac{-\left(-5808\right)±\sqrt{33732864-33732864}}{2\times 484}
Multiply -1936 times 17424.
x=\frac{-\left(-5808\right)±\sqrt{0}}{2\times 484}
Add 33732864 to -33732864.
x=-\frac{-5808}{2\times 484}
Take the square root of 0.
x=\frac{5808}{2\times 484}
The opposite of -5808 is 5808.
x=\frac{5808}{968}
Multiply 2 times 484.
x=6
Divide 5808 by 968.
2\sqrt{7-6}+3\sqrt{2\times 6-3}=11
Substitute 6 for x in the equation 2\sqrt{7-x}+3\sqrt{2x-3}=11.
11=11
Simplify. The value x=6 satisfies the equation.
x=6
Equation 2\sqrt{7-x}=-3\sqrt{2x-3}+11 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}