Evaluate
4\left(\sqrt{3}-27\sqrt{2}\right)\approx -145.806861506
Factor
4 {(\sqrt{3} - 27 \sqrt{2})} = -145.806861506
Share
Copied to clipboard
2\sqrt{6}\left(3\sqrt{2}-24\sqrt{\frac{1\times 3+1}{3}}\right)-2\sqrt{3}\left(\sqrt{24}+4\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
2\sqrt{6}\left(3\sqrt{2}-24\sqrt{\frac{3+1}{3}}\right)-2\sqrt{3}\left(\sqrt{24}+4\right)
Multiply 1 and 3 to get 3.
2\sqrt{6}\left(3\sqrt{2}-24\sqrt{\frac{4}{3}}\right)-2\sqrt{3}\left(\sqrt{24}+4\right)
Add 3 and 1 to get 4.
2\sqrt{6}\left(3\sqrt{2}-24\times \frac{\sqrt{4}}{\sqrt{3}}\right)-2\sqrt{3}\left(\sqrt{24}+4\right)
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
2\sqrt{6}\left(3\sqrt{2}-24\times \frac{2}{\sqrt{3}}\right)-2\sqrt{3}\left(\sqrt{24}+4\right)
Calculate the square root of 4 and get 2.
2\sqrt{6}\left(3\sqrt{2}-24\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)-2\sqrt{3}\left(\sqrt{24}+4\right)
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\sqrt{6}\left(3\sqrt{2}-24\times \frac{2\sqrt{3}}{3}\right)-2\sqrt{3}\left(\sqrt{24}+4\right)
The square of \sqrt{3} is 3.
2\sqrt{6}\left(3\sqrt{2}-8\times 2\sqrt{3}\right)-2\sqrt{3}\left(\sqrt{24}+4\right)
Cancel out 3, the greatest common factor in 24 and 3.
2\sqrt{6}\left(3\sqrt{2}-8\times 2\sqrt{3}\right)-2\sqrt{3}\left(2\sqrt{6}+4\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
2\sqrt{6}\left(3\sqrt{2}-16\sqrt{3}\right)-2\sqrt{3}\left(2\sqrt{6}+4\right)
Multiply 8 and 2 to get 16.
6\sqrt{6}\sqrt{2}-32\sqrt{3}\sqrt{6}-2\sqrt{3}\left(2\sqrt{6}+4\right)
Use the distributive property to multiply 2\sqrt{6} by 3\sqrt{2}-16\sqrt{3}.
6\sqrt{2}\sqrt{3}\sqrt{2}-32\sqrt{3}\sqrt{6}-2\sqrt{3}\left(2\sqrt{6}+4\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6\times 2\sqrt{3}-32\sqrt{3}\sqrt{6}-2\sqrt{3}\left(2\sqrt{6}+4\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
12\sqrt{3}-32\sqrt{3}\sqrt{6}-2\sqrt{3}\left(2\sqrt{6}+4\right)
Multiply 6 and 2 to get 12.
12\sqrt{3}-32\sqrt{3}\sqrt{3}\sqrt{2}-2\sqrt{3}\left(2\sqrt{6}+4\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
12\sqrt{3}-32\times 3\sqrt{2}-2\sqrt{3}\left(2\sqrt{6}+4\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
12\sqrt{3}-96\sqrt{2}-2\sqrt{3}\left(2\sqrt{6}+4\right)
Multiply -32 and 3 to get -96.
12\sqrt{3}-96\sqrt{2}-4\sqrt{3}\sqrt{6}-8\sqrt{3}
Use the distributive property to multiply -2\sqrt{3} by 2\sqrt{6}+4.
12\sqrt{3}-96\sqrt{2}-4\sqrt{3}\sqrt{3}\sqrt{2}-8\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
12\sqrt{3}-96\sqrt{2}-4\times 3\sqrt{2}-8\sqrt{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
12\sqrt{3}-96\sqrt{2}-12\sqrt{2}-8\sqrt{3}
Multiply -4 and 3 to get -12.
12\sqrt{3}-108\sqrt{2}-8\sqrt{3}
Combine -96\sqrt{2} and -12\sqrt{2} to get -108\sqrt{2}.
4\sqrt{3}-108\sqrt{2}
Combine 12\sqrt{3} and -8\sqrt{3} to get 4\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}