Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{5}+4\sqrt{3}-\frac{2\times 3\sqrt{2}-\sqrt{27}}{\sqrt{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
2\sqrt{5}+4\sqrt{3}-\frac{6\sqrt{2}-\sqrt{27}}{\sqrt{3}}
Multiply 2 and 3 to get 6.
2\sqrt{5}+4\sqrt{3}-\frac{6\sqrt{2}-3\sqrt{3}}{\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
2\sqrt{5}+4\sqrt{3}-\frac{\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{6\sqrt{2}-3\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\sqrt{5}+4\sqrt{3}-\frac{\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{3\left(2\sqrt{5}+4\sqrt{3}\right)}{3}-\frac{\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{5}+4\sqrt{3} times \frac{3}{3}.
\frac{3\left(2\sqrt{5}+4\sqrt{3}\right)-\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{3}
Since \frac{3\left(2\sqrt{5}+4\sqrt{3}\right)}{3} and \frac{\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{6\sqrt{5}+12\sqrt{3}-6\sqrt{6}+9}{3}
Do the multiplications in 3\left(2\sqrt{5}+4\sqrt{3}\right)-\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}.
2\sqrt{5}+4\sqrt{3}-2\sqrt{6}+3
Divide each term of 6\sqrt{5}+12\sqrt{3}-6\sqrt{6}+9 by 3 to get 2\sqrt{5}+4\sqrt{3}-2\sqrt{6}+3.