Evaluate
\frac{7\sqrt{3}}{4}\approx 3.031088913
Share
Copied to clipboard
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}}{\sqrt{20}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}}{2\sqrt{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\frac{1}{2}\sqrt{15}}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}\sqrt{5}}{2\times 5}
The square of \sqrt{5} is 5.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{5}\sqrt{3}\sqrt{5}}{2\times 5}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
2\sqrt{3}-\frac{\frac{1}{2}\times 5\sqrt{3}}{2\times 5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
2\sqrt{3}-\frac{\frac{1}{2}\times 5\sqrt{3}}{10}
Multiply 2 and 5 to get 10.
2\sqrt{3}-\frac{\frac{5}{2}\sqrt{3}}{10}
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
2\sqrt{3}-\frac{1}{4}\sqrt{3}
Divide \frac{5}{2}\sqrt{3} by 10 to get \frac{1}{4}\sqrt{3}.
\frac{7}{4}\sqrt{3}
Combine 2\sqrt{3} and -\frac{1}{4}\sqrt{3} to get \frac{7}{4}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}