Evaluate
\frac{132\sqrt{7}}{7}\approx 49.891310437
Quiz
Arithmetic
5 problems similar to:
2 \sqrt { 28 } + 3 \sqrt { 175 } - \frac { 4 } { \sqrt { 112 } }
Share
Copied to clipboard
2\times 2\sqrt{7}+3\sqrt{175}-\frac{4}{\sqrt{112}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
4\sqrt{7}+3\sqrt{175}-\frac{4}{\sqrt{112}}
Multiply 2 and 2 to get 4.
4\sqrt{7}+3\times 5\sqrt{7}-\frac{4}{\sqrt{112}}
Factor 175=5^{2}\times 7. Rewrite the square root of the product \sqrt{5^{2}\times 7} as the product of square roots \sqrt{5^{2}}\sqrt{7}. Take the square root of 5^{2}.
4\sqrt{7}+15\sqrt{7}-\frac{4}{\sqrt{112}}
Multiply 3 and 5 to get 15.
19\sqrt{7}-\frac{4}{\sqrt{112}}
Combine 4\sqrt{7} and 15\sqrt{7} to get 19\sqrt{7}.
19\sqrt{7}-\frac{4}{4\sqrt{7}}
Factor 112=4^{2}\times 7. Rewrite the square root of the product \sqrt{4^{2}\times 7} as the product of square roots \sqrt{4^{2}}\sqrt{7}. Take the square root of 4^{2}.
19\sqrt{7}-\frac{4\sqrt{7}}{4\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{4}{4\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
19\sqrt{7}-\frac{4\sqrt{7}}{4\times 7}
The square of \sqrt{7} is 7.
19\sqrt{7}-\frac{\sqrt{7}}{7}
Cancel out 4 in both numerator and denominator.
\frac{132}{7}\sqrt{7}
Combine 19\sqrt{7} and -\frac{\sqrt{7}}{7} to get \frac{132}{7}\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}