Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\times 3\sqrt{2}-3\sqrt{2}-3\sqrt{\frac{1}{2}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
6\sqrt{2}-3\sqrt{2}-3\sqrt{\frac{1}{2}}
Multiply 2 and 3 to get 6.
3\sqrt{2}-3\sqrt{\frac{1}{2}}
Combine 6\sqrt{2} and -3\sqrt{2} to get 3\sqrt{2}.
3\sqrt{2}-3\times \frac{\sqrt{1}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
3\sqrt{2}-3\times \frac{1}{\sqrt{2}}
Calculate the square root of 1 and get 1.
3\sqrt{2}-3\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3\sqrt{2}-3\times \frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
3\sqrt{2}+\frac{-3\sqrt{2}}{2}
Express -3\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{2\times 3\sqrt{2}}{2}+\frac{-3\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{2} times \frac{2}{2}.
\frac{2\times 3\sqrt{2}-3\sqrt{2}}{2}
Since \frac{2\times 3\sqrt{2}}{2} and \frac{-3\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{6\sqrt{2}-3\sqrt{2}}{2}
Do the multiplications in 2\times 3\sqrt{2}-3\sqrt{2}.
\frac{3\sqrt{2}}{2}
Do the calculations in 6\sqrt{2}-3\sqrt{2}.