Evaluate
\frac{19\sqrt{3}}{3}-\frac{3\sqrt{37}}{37}\approx 10.476458153
Share
Copied to clipboard
2\sqrt{\frac{3+1}{3}}-3\sqrt{\frac{1}{37}}+\sqrt{75}
Multiply 1 and 3 to get 3.
2\sqrt{\frac{4}{3}}-3\sqrt{\frac{1}{37}}+\sqrt{75}
Add 3 and 1 to get 4.
2\times \frac{\sqrt{4}}{\sqrt{3}}-3\sqrt{\frac{1}{37}}+\sqrt{75}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
2\times \frac{2}{\sqrt{3}}-3\sqrt{\frac{1}{37}}+\sqrt{75}
Calculate the square root of 4 and get 2.
2\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-3\sqrt{\frac{1}{37}}+\sqrt{75}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\times \frac{2\sqrt{3}}{3}-3\sqrt{\frac{1}{37}}+\sqrt{75}
The square of \sqrt{3} is 3.
\frac{2\times 2\sqrt{3}}{3}-3\sqrt{\frac{1}{37}}+\sqrt{75}
Express 2\times \frac{2\sqrt{3}}{3} as a single fraction.
\frac{2\times 2\sqrt{3}}{3}-3\times \frac{\sqrt{1}}{\sqrt{37}}+\sqrt{75}
Rewrite the square root of the division \sqrt{\frac{1}{37}} as the division of square roots \frac{\sqrt{1}}{\sqrt{37}}.
\frac{2\times 2\sqrt{3}}{3}-3\times \frac{1}{\sqrt{37}}+\sqrt{75}
Calculate the square root of 1 and get 1.
\frac{2\times 2\sqrt{3}}{3}-3\times \frac{\sqrt{37}}{\left(\sqrt{37}\right)^{2}}+\sqrt{75}
Rationalize the denominator of \frac{1}{\sqrt{37}} by multiplying numerator and denominator by \sqrt{37}.
\frac{2\times 2\sqrt{3}}{3}-3\times \frac{\sqrt{37}}{37}+\sqrt{75}
The square of \sqrt{37} is 37.
\frac{2\times 2\sqrt{3}}{3}+\frac{-3\sqrt{37}}{37}+\sqrt{75}
Express -3\times \frac{\sqrt{37}}{37} as a single fraction.
\frac{2\times 2\sqrt{3}}{3}+\frac{-3\sqrt{37}}{37}+5\sqrt{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{37\times 2\times 2\sqrt{3}}{111}+\frac{3\left(-1\right)\times 3\sqrt{37}}{111}+5\sqrt{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 37 is 111. Multiply \frac{2\times 2\sqrt{3}}{3} times \frac{37}{37}. Multiply \frac{-3\sqrt{37}}{37} times \frac{3}{3}.
\frac{37\times 2\times 2\sqrt{3}+3\left(-1\right)\times 3\sqrt{37}}{111}+5\sqrt{3}
Since \frac{37\times 2\times 2\sqrt{3}}{111} and \frac{3\left(-1\right)\times 3\sqrt{37}}{111} have the same denominator, add them by adding their numerators.
\frac{148\sqrt{3}-9\sqrt{37}}{111}+5\sqrt{3}
Do the multiplications in 37\times 2\times 2\sqrt{3}+3\left(-1\right)\times 3\sqrt{37}.
\frac{148\sqrt{3}-9\sqrt{37}}{111}+\frac{111\times 5\sqrt{3}}{111}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5\sqrt{3} times \frac{111}{111}.
\frac{148\sqrt{3}-9\sqrt{37}+111\times 5\sqrt{3}}{111}
Since \frac{148\sqrt{3}-9\sqrt{37}}{111} and \frac{111\times 5\sqrt{3}}{111} have the same denominator, add them by adding their numerators.
\frac{148\sqrt{3}-9\sqrt{37}+555\sqrt{3}}{111}
Do the multiplications in 148\sqrt{3}-9\sqrt{37}+111\times 5\sqrt{3}.
\frac{703\sqrt{3}-9\sqrt{37}}{111}
Do the calculations in 148\sqrt{3}-9\sqrt{37}+555\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}