Solve for x
x=\frac{17}{197}\approx 0.086294416
Graph
Share
Copied to clipboard
4\left(2x+3\right)-70x=5\times 9\left(3x-1\right)+40
Multiply both sides of the equation by 10, the least common multiple of 5,2.
8x+12-70x=5\times 9\left(3x-1\right)+40
Use the distributive property to multiply 4 by 2x+3.
-62x+12=5\times 9\left(3x-1\right)+40
Combine 8x and -70x to get -62x.
-62x+12=45\left(3x-1\right)+40
Multiply 5 and 9 to get 45.
-62x+12=135x-45+40
Use the distributive property to multiply 45 by 3x-1.
-62x+12=135x-5
Add -45 and 40 to get -5.
-62x+12-135x=-5
Subtract 135x from both sides.
-197x+12=-5
Combine -62x and -135x to get -197x.
-197x=-5-12
Subtract 12 from both sides.
-197x=-17
Subtract 12 from -5 to get -17.
x=\frac{-17}{-197}
Divide both sides by -197.
x=\frac{17}{197}
Fraction \frac{-17}{-197} can be simplified to \frac{17}{197} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}