2 \left( a+b+c \right) =(a+b+ck
Solve for a
a=ck-b-2c
Solve for b
b=ck-a-2c
Share
Copied to clipboard
2a+2b+2c=a+b+ck
Use the distributive property to multiply 2 by a+b+c.
2a+2b+2c-a=b+ck
Subtract a from both sides.
a+2b+2c=b+ck
Combine 2a and -a to get a.
a+2c=b+ck-2b
Subtract 2b from both sides.
a+2c=-b+ck
Combine b and -2b to get -b.
a=-b+ck-2c
Subtract 2c from both sides.
2a+2b+2c=a+b+ck
Use the distributive property to multiply 2 by a+b+c.
2a+2b+2c-b=a+ck
Subtract b from both sides.
2a+b+2c=a+ck
Combine 2b and -b to get b.
b+2c=a+ck-2a
Subtract 2a from both sides.
b+2c=-a+ck
Combine a and -2a to get -a.
b=-a+ck-2c
Subtract 2c from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}