Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

2a+2b+2c=\left(a+b+c\right)k
Use the distributive property to multiply 2 by a+b+c.
2a+2b+2c=ak+bk+ck
Use the distributive property to multiply a+b+c by k.
2a+2b+2c-ak=bk+ck
Subtract ak from both sides.
2a+2c-ak=bk+ck-2b
Subtract 2b from both sides.
2a-ak=bk+ck-2b-2c
Subtract 2c from both sides.
\left(2-k\right)a=bk+ck-2b-2c
Combine all terms containing a.
\left(2-k\right)a=bk-2b+ck-2c
The equation is in standard form.
\frac{\left(2-k\right)a}{2-k}=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Divide both sides by 2-k.
a=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Dividing by 2-k undoes the multiplication by 2-k.
a=-\left(b+c\right)
Divide \left(-2+k\right)\left(b+c\right) by 2-k.
2a+2b+2c=\left(a+b+c\right)k
Use the distributive property to multiply 2 by a+b+c.
2a+2b+2c=ak+bk+ck
Use the distributive property to multiply a+b+c by k.
2a+2b+2c-bk=ak+ck
Subtract bk from both sides.
2b+2c-bk=ak+ck-2a
Subtract 2a from both sides.
2b-bk=ak+ck-2a-2c
Subtract 2c from both sides.
\left(2-k\right)b=ak+ck-2a-2c
Combine all terms containing b.
\left(2-k\right)b=ak-2a+ck-2c
The equation is in standard form.
\frac{\left(2-k\right)b}{2-k}=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Divide both sides by 2-k.
b=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Dividing by 2-k undoes the multiplication by 2-k.
b=-\left(a+c\right)
Divide \left(-2+k\right)\left(a+c\right) by 2-k.