Solve for x
x=\frac{-2\lambda -11}{3}
Solve for λ
\lambda =\frac{-3x-11}{2}
Graph
Share
Copied to clipboard
2\lambda +14=-3\left(x-1\right)
Add 11 and 3 to get 14.
2\lambda +14=-3x+3
Use the distributive property to multiply -3 by x-1.
-3x+3=2\lambda +14
Swap sides so that all variable terms are on the left hand side.
-3x=2\lambda +14-3
Subtract 3 from both sides.
-3x=2\lambda +11
Subtract 3 from 14 to get 11.
\frac{-3x}{-3}=\frac{2\lambda +11}{-3}
Divide both sides by -3.
x=\frac{2\lambda +11}{-3}
Dividing by -3 undoes the multiplication by -3.
x=\frac{-2\lambda -11}{3}
Divide 2\lambda +11 by -3.
2\lambda +14=-3\left(x-1\right)
Add 11 and 3 to get 14.
2\lambda +14=-3x+3
Use the distributive property to multiply -3 by x-1.
2\lambda =-3x+3-14
Subtract 14 from both sides.
2\lambda =-3x-11
Subtract 14 from 3 to get -11.
\frac{2\lambda }{2}=\frac{-3x-11}{2}
Divide both sides by 2.
\lambda =\frac{-3x-11}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}