Evaluate
-\frac{291}{10}=-29.1
Factor
-\frac{291}{10} = -29\frac{1}{10} = -29.1
Share
Copied to clipboard
\frac{4+1}{2}+\frac{48}{-2}-\frac{7\times 5+3}{5}
Multiply 2 and 2 to get 4.
\frac{5}{2}+\frac{48}{-2}-\frac{7\times 5+3}{5}
Add 4 and 1 to get 5.
\frac{5}{2}-24-\frac{7\times 5+3}{5}
Divide 48 by -2 to get -24.
\frac{5}{2}-\frac{48}{2}-\frac{7\times 5+3}{5}
Convert 24 to fraction \frac{48}{2}.
\frac{5-48}{2}-\frac{7\times 5+3}{5}
Since \frac{5}{2} and \frac{48}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{43}{2}-\frac{7\times 5+3}{5}
Subtract 48 from 5 to get -43.
-\frac{43}{2}-\frac{35+3}{5}
Multiply 7 and 5 to get 35.
-\frac{43}{2}-\frac{38}{5}
Add 35 and 3 to get 38.
-\frac{215}{10}-\frac{76}{10}
Least common multiple of 2 and 5 is 10. Convert -\frac{43}{2} and \frac{38}{5} to fractions with denominator 10.
\frac{-215-76}{10}
Since -\frac{215}{10} and \frac{76}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{291}{10}
Subtract 76 from -215 to get -291.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}