Evaluate
\frac{9642}{2705}\approx 3.564510166
Factor
\frac{2 \cdot 3 \cdot 1607}{5 \cdot 541} = 3\frac{1527}{2705} = 3.564510166358595
Share
Copied to clipboard
\frac{10+2}{5}+\frac{\frac{3\times 4+3}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{2}-\frac{1}{2}\times \frac{3}{4}}
Multiply 2 and 5 to get 10.
\frac{12}{5}+\frac{\frac{3\times 4+3}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{2}-\frac{1}{2}\times \frac{3}{4}}
Add 10 and 2 to get 12.
\frac{12}{5}+\frac{\frac{12+3}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{2}-\frac{1}{2}\times \frac{3}{4}}
Multiply 3 and 4 to get 12.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{2}-\frac{1}{2}\times \frac{3}{4}}
Add 12 and 3 to get 15.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{1}{3\times 2}-\frac{1}{2}\times \frac{3}{4}}
Express \frac{\frac{1}{3}}{2} as a single fraction.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{1}{6}-\frac{1}{2}\times \frac{3}{4}}
Multiply 3 and 2 to get 6.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{18}{6}-\frac{1}{6}-\frac{1}{2}\times \frac{3}{4}}
Convert 3 to fraction \frac{18}{6}.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{18-1}{6}-\frac{1}{2}\times \frac{3}{4}}
Since \frac{18}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{17}{6}-\frac{1}{2}\times \frac{3}{4}}
Subtract 1 from 18 to get 17.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{17}{6}-\frac{1\times 3}{2\times 4}}
Multiply \frac{1}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{17}{6}-\frac{3}{8}}
Do the multiplications in the fraction \frac{1\times 3}{2\times 4}.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{68}{24}-\frac{9}{24}}
Least common multiple of 6 and 8 is 24. Convert \frac{17}{6} and \frac{3}{8} to fractions with denominator 24.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{68-9}{24}}
Since \frac{68}{24} and \frac{9}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{59}{24}}
Subtract 9 from 68 to get 59.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{128}{168}+\frac{413}{168}}
Least common multiple of 21 and 24 is 168. Convert \frac{16}{21} and \frac{59}{24} to fractions with denominator 168.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{128+413}{168}}
Since \frac{128}{168} and \frac{413}{168} have the same denominator, add them by adding their numerators.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{541}{168}}
Add 128 and 413 to get 541.
\frac{12}{5}+\frac{15}{4}\times \frac{168}{541}
Divide \frac{15}{4} by \frac{541}{168} by multiplying \frac{15}{4} by the reciprocal of \frac{541}{168}.
\frac{12}{5}+\frac{15\times 168}{4\times 541}
Multiply \frac{15}{4} times \frac{168}{541} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}+\frac{2520}{2164}
Do the multiplications in the fraction \frac{15\times 168}{4\times 541}.
\frac{12}{5}+\frac{630}{541}
Reduce the fraction \frac{2520}{2164} to lowest terms by extracting and canceling out 4.
\frac{6492}{2705}+\frac{3150}{2705}
Least common multiple of 5 and 541 is 2705. Convert \frac{12}{5} and \frac{630}{541} to fractions with denominator 2705.
\frac{6492+3150}{2705}
Since \frac{6492}{2705} and \frac{3150}{2705} have the same denominator, add them by adding their numerators.
\frac{9642}{2705}
Add 6492 and 3150 to get 9642.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}