Evaluate
\frac{118}{15}\approx 7.866666667
Factor
\frac{2 \cdot 59}{3 \cdot 5} = 7\frac{13}{15} = 7.866666666666666
Share
Copied to clipboard
\frac{6+2}{3}\left(\frac{2\times 3+1}{3}+\frac{2\times 12+5}{12}\right)-\frac{4\times 5+4}{5}
Multiply 2 and 3 to get 6.
\frac{8}{3}\left(\frac{2\times 3+1}{3}+\frac{2\times 12+5}{12}\right)-\frac{4\times 5+4}{5}
Add 6 and 2 to get 8.
\frac{8}{3}\left(\frac{6+1}{3}+\frac{2\times 12+5}{12}\right)-\frac{4\times 5+4}{5}
Multiply 2 and 3 to get 6.
\frac{8}{3}\left(\frac{7}{3}+\frac{2\times 12+5}{12}\right)-\frac{4\times 5+4}{5}
Add 6 and 1 to get 7.
\frac{8}{3}\left(\frac{7}{3}+\frac{24+5}{12}\right)-\frac{4\times 5+4}{5}
Multiply 2 and 12 to get 24.
\frac{8}{3}\left(\frac{7}{3}+\frac{29}{12}\right)-\frac{4\times 5+4}{5}
Add 24 and 5 to get 29.
\frac{8}{3}\left(\frac{28}{12}+\frac{29}{12}\right)-\frac{4\times 5+4}{5}
Least common multiple of 3 and 12 is 12. Convert \frac{7}{3} and \frac{29}{12} to fractions with denominator 12.
\frac{8}{3}\times \frac{28+29}{12}-\frac{4\times 5+4}{5}
Since \frac{28}{12} and \frac{29}{12} have the same denominator, add them by adding their numerators.
\frac{8}{3}\times \frac{57}{12}-\frac{4\times 5+4}{5}
Add 28 and 29 to get 57.
\frac{8}{3}\times \frac{19}{4}-\frac{4\times 5+4}{5}
Reduce the fraction \frac{57}{12} to lowest terms by extracting and canceling out 3.
\frac{8\times 19}{3\times 4}-\frac{4\times 5+4}{5}
Multiply \frac{8}{3} times \frac{19}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{152}{12}-\frac{4\times 5+4}{5}
Do the multiplications in the fraction \frac{8\times 19}{3\times 4}.
\frac{38}{3}-\frac{4\times 5+4}{5}
Reduce the fraction \frac{152}{12} to lowest terms by extracting and canceling out 4.
\frac{38}{3}-\frac{20+4}{5}
Multiply 4 and 5 to get 20.
\frac{38}{3}-\frac{24}{5}
Add 20 and 4 to get 24.
\frac{190}{15}-\frac{72}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{38}{3} and \frac{24}{5} to fractions with denominator 15.
\frac{190-72}{15}
Since \frac{190}{15} and \frac{72}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{118}{15}
Subtract 72 from 190 to get 118.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}