Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

2\times \frac{\left(1-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{1-3i}{1+i} by the complex conjugate of the denominator, 1-i.
2\times \frac{\left(1-3i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\times \frac{\left(1-3i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
2\times \frac{1\times 1+1\left(-i\right)-3i-3\left(-1\right)i^{2}}{2}
Multiply complex numbers 1-3i and 1-i like you multiply binomials.
2\times \frac{1\times 1+1\left(-i\right)-3i-3\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
2\times \frac{1-i-3i-3}{2}
Do the multiplications in 1\times 1+1\left(-i\right)-3i-3\left(-1\right)\left(-1\right).
2\times \frac{1-3+\left(-1-3\right)i}{2}
Combine the real and imaginary parts in 1-i-3i-3.
2\times \frac{-2-4i}{2}
Do the additions in 1-3+\left(-1-3\right)i.
2\left(-1-2i\right)
Divide -2-4i by 2 to get -1-2i.
2\left(-1\right)+2\times \left(-2i\right)
Multiply 2 times -1-2i.
-2-4i
Do the multiplications.
Re(2\times \frac{\left(1-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{1-3i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(2\times \frac{\left(1-3i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(2\times \frac{\left(1-3i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(2\times \frac{1\times 1+1\left(-i\right)-3i-3\left(-1\right)i^{2}}{2})
Multiply complex numbers 1-3i and 1-i like you multiply binomials.
Re(2\times \frac{1\times 1+1\left(-i\right)-3i-3\left(-1\right)\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(2\times \frac{1-i-3i-3}{2})
Do the multiplications in 1\times 1+1\left(-i\right)-3i-3\left(-1\right)\left(-1\right).
Re(2\times \frac{1-3+\left(-1-3\right)i}{2})
Combine the real and imaginary parts in 1-i-3i-3.
Re(2\times \frac{-2-4i}{2})
Do the additions in 1-3+\left(-1-3\right)i.
Re(2\left(-1-2i\right))
Divide -2-4i by 2 to get -1-2i.
Re(2\left(-1\right)+2\times \left(-2i\right))
Multiply 2 times -1-2i.
Re(-2-4i)
Do the multiplications in 2\left(-1\right)+2\times \left(-2i\right).
-2
The real part of -2-4i is -2.