Evaluate
-2-4i
Real Part
-2
Share
Copied to clipboard
2\times \frac{\left(1-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{1-3i}{1+i} by the complex conjugate of the denominator, 1-i.
2\times \frac{\left(1-3i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\times \frac{\left(1-3i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
2\times \frac{1\times 1+1\left(-i\right)-3i-3\left(-1\right)i^{2}}{2}
Multiply complex numbers 1-3i and 1-i like you multiply binomials.
2\times \frac{1\times 1+1\left(-i\right)-3i-3\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
2\times \frac{1-i-3i-3}{2}
Do the multiplications in 1\times 1+1\left(-i\right)-3i-3\left(-1\right)\left(-1\right).
2\times \frac{1-3+\left(-1-3\right)i}{2}
Combine the real and imaginary parts in 1-i-3i-3.
2\times \frac{-2-4i}{2}
Do the additions in 1-3+\left(-1-3\right)i.
2\left(-1-2i\right)
Divide -2-4i by 2 to get -1-2i.
2\left(-1\right)+2\times \left(-2i\right)
Multiply 2 times -1-2i.
-2-4i
Do the multiplications.
Re(2\times \frac{\left(1-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{1-3i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(2\times \frac{\left(1-3i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(2\times \frac{\left(1-3i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(2\times \frac{1\times 1+1\left(-i\right)-3i-3\left(-1\right)i^{2}}{2})
Multiply complex numbers 1-3i and 1-i like you multiply binomials.
Re(2\times \frac{1\times 1+1\left(-i\right)-3i-3\left(-1\right)\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(2\times \frac{1-i-3i-3}{2})
Do the multiplications in 1\times 1+1\left(-i\right)-3i-3\left(-1\right)\left(-1\right).
Re(2\times \frac{1-3+\left(-1-3\right)i}{2})
Combine the real and imaginary parts in 1-i-3i-3.
Re(2\times \frac{-2-4i}{2})
Do the additions in 1-3+\left(-1-3\right)i.
Re(2\left(-1-2i\right))
Divide -2-4i by 2 to get -1-2i.
Re(2\left(-1\right)+2\times \left(-2i\right))
Multiply 2 times -1-2i.
Re(-2-4i)
Do the multiplications in 2\left(-1\right)+2\times \left(-2i\right).
-2
The real part of -2-4i is -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}