Evaluate
\frac{103}{12}\approx 8.583333333
Factor
\frac{103}{2 ^ {2} \cdot 3} = 8\frac{7}{12} = 8.583333333333334
Share
Copied to clipboard
\frac{8+1}{4}+\frac{5\times 8+5}{8}\times \frac{1\times 3+1}{3}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Multiply 2 and 4 to get 8.
\frac{9}{4}+\frac{5\times 8+5}{8}\times \frac{1\times 3+1}{3}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Add 8 and 1 to get 9.
\frac{9}{4}+\frac{40+5}{8}\times \frac{1\times 3+1}{3}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Multiply 5 and 8 to get 40.
\frac{9}{4}+\frac{45}{8}\times \frac{1\times 3+1}{3}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Add 40 and 5 to get 45.
\frac{9}{4}+\frac{45}{8}\times \frac{3+1}{3}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Multiply 1 and 3 to get 3.
\frac{9}{4}+\frac{45}{8}\times \frac{4}{3}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Add 3 and 1 to get 4.
\frac{9}{4}+\frac{45\times 4}{8\times 3}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Multiply \frac{45}{8} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{4}+\frac{180}{24}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Do the multiplications in the fraction \frac{45\times 4}{8\times 3}.
\frac{9}{4}+\frac{15}{2}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Reduce the fraction \frac{180}{24} to lowest terms by extracting and canceling out 12.
\frac{9}{4}+\frac{30}{4}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Least common multiple of 4 and 2 is 4. Convert \frac{9}{4} and \frac{15}{2} to fractions with denominator 4.
\frac{9+30}{4}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Since \frac{9}{4} and \frac{30}{4} have the same denominator, add them by adding their numerators.
\frac{39}{4}-\frac{\frac{1\times 4+3}{4}}{\frac{1\times 2+1}{2}}
Add 9 and 30 to get 39.
\frac{39}{4}-\frac{\left(1\times 4+3\right)\times 2}{4\left(1\times 2+1\right)}
Divide \frac{1\times 4+3}{4} by \frac{1\times 2+1}{2} by multiplying \frac{1\times 4+3}{4} by the reciprocal of \frac{1\times 2+1}{2}.
\frac{39}{4}-\frac{3+4}{2\left(1+2\right)}
Cancel out 2 in both numerator and denominator.
\frac{39}{4}-\frac{7}{2\left(1+2\right)}
Add 3 and 4 to get 7.
\frac{39}{4}-\frac{7}{2\times 3}
Add 1 and 2 to get 3.
\frac{39}{4}-\frac{7}{6}
Multiply 2 and 3 to get 6.
\frac{117}{12}-\frac{14}{12}
Least common multiple of 4 and 6 is 12. Convert \frac{39}{4} and \frac{7}{6} to fractions with denominator 12.
\frac{117-14}{12}
Since \frac{117}{12} and \frac{14}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{103}{12}
Subtract 14 from 117 to get 103.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}