Evaluate
\frac{13}{24}\approx 0.541666667
Factor
\frac{13}{2 ^ {3} \cdot 3} = 0.5416666666666666
Share
Copied to clipboard
\frac{8+1}{4}+\frac{1}{6}-\frac{1\times 8+7}{8}
Multiply 2 and 4 to get 8.
\frac{9}{4}+\frac{1}{6}-\frac{1\times 8+7}{8}
Add 8 and 1 to get 9.
\frac{27}{12}+\frac{2}{12}-\frac{1\times 8+7}{8}
Least common multiple of 4 and 6 is 12. Convert \frac{9}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{27+2}{12}-\frac{1\times 8+7}{8}
Since \frac{27}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
\frac{29}{12}-\frac{1\times 8+7}{8}
Add 27 and 2 to get 29.
\frac{29}{12}-\frac{8+7}{8}
Multiply 1 and 8 to get 8.
\frac{29}{12}-\frac{15}{8}
Add 8 and 7 to get 15.
\frac{58}{24}-\frac{45}{24}
Least common multiple of 12 and 8 is 24. Convert \frac{29}{12} and \frac{15}{8} to fractions with denominator 24.
\frac{58-45}{24}
Since \frac{58}{24} and \frac{45}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{24}
Subtract 45 from 58 to get 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}