Evaluate
2a^{2}+9b^{2}
Expand
2a^{2}+9b^{2}
Share
Copied to clipboard
6a\left(a-b\right)-\left(2a+3b\right)\left(2a-3b\right)+6ab
Multiply 2 and 3 to get 6.
6a^{2}-6ab-\left(2a+3b\right)\left(2a-3b\right)+6ab
Use the distributive property to multiply 6a by a-b.
6a^{2}-6ab-\left(\left(2a\right)^{2}-\left(3b\right)^{2}\right)+6ab
Consider \left(2a+3b\right)\left(2a-3b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6a^{2}-6ab-\left(2^{2}a^{2}-\left(3b\right)^{2}\right)+6ab
Expand \left(2a\right)^{2}.
6a^{2}-6ab-\left(4a^{2}-\left(3b\right)^{2}\right)+6ab
Calculate 2 to the power of 2 and get 4.
6a^{2}-6ab-\left(4a^{2}-3^{2}b^{2}\right)+6ab
Expand \left(3b\right)^{2}.
6a^{2}-6ab-\left(4a^{2}-9b^{2}\right)+6ab
Calculate 3 to the power of 2 and get 9.
6a^{2}-6ab-4a^{2}-\left(-9b^{2}\right)+6ab
To find the opposite of 4a^{2}-9b^{2}, find the opposite of each term.
6a^{2}-6ab-4a^{2}+9b^{2}+6ab
The opposite of -9b^{2} is 9b^{2}.
2a^{2}-6ab+9b^{2}+6ab
Combine 6a^{2} and -4a^{2} to get 2a^{2}.
2a^{2}+9b^{2}
Combine -6ab and 6ab to get 0.
6a\left(a-b\right)-\left(2a+3b\right)\left(2a-3b\right)+6ab
Multiply 2 and 3 to get 6.
6a^{2}-6ab-\left(2a+3b\right)\left(2a-3b\right)+6ab
Use the distributive property to multiply 6a by a-b.
6a^{2}-6ab-\left(\left(2a\right)^{2}-\left(3b\right)^{2}\right)+6ab
Consider \left(2a+3b\right)\left(2a-3b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6a^{2}-6ab-\left(2^{2}a^{2}-\left(3b\right)^{2}\right)+6ab
Expand \left(2a\right)^{2}.
6a^{2}-6ab-\left(4a^{2}-\left(3b\right)^{2}\right)+6ab
Calculate 2 to the power of 2 and get 4.
6a^{2}-6ab-\left(4a^{2}-3^{2}b^{2}\right)+6ab
Expand \left(3b\right)^{2}.
6a^{2}-6ab-\left(4a^{2}-9b^{2}\right)+6ab
Calculate 3 to the power of 2 and get 9.
6a^{2}-6ab-4a^{2}-\left(-9b^{2}\right)+6ab
To find the opposite of 4a^{2}-9b^{2}, find the opposite of each term.
6a^{2}-6ab-4a^{2}+9b^{2}+6ab
The opposite of -9b^{2} is 9b^{2}.
2a^{2}-6ab+9b^{2}+6ab
Combine 6a^{2} and -4a^{2} to get 2a^{2}.
2a^{2}+9b^{2}
Combine -6ab and 6ab to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}