Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
2x+8-3\left(x+1\right)^{2}=x\left(6-3x\right)
Use the distributive property to multiply 2 by x+4.
2x+8-3\left(x^{2}+2x+1\right)=x\left(6-3x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x+8-3x^{2}-6x-3=x\left(6-3x\right)
Use the distributive property to multiply -3 by x^{2}+2x+1.
-4x+8-3x^{2}-3=x\left(6-3x\right)
Combine 2x and -6x to get -4x.
-4x+5-3x^{2}=x\left(6-3x\right)
Subtract 3 from 8 to get 5.
-4x+5-3x^{2}=6x-3x^{2}
Use the distributive property to multiply x by 6-3x.
-4x+5-3x^{2}-6x=-3x^{2}
Subtract 6x from both sides.
-10x+5-3x^{2}=-3x^{2}
Combine -4x and -6x to get -10x.
-10x+5-3x^{2}+3x^{2}=0
Add 3x^{2} to both sides.
-10x+5=0
Combine -3x^{2} and 3x^{2} to get 0.
-10x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-5}{-10}
Divide both sides by -10.
x=\frac{1}{2}
Reduce the fraction \frac{-5}{-10} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}