Evaluate
\frac{2\sqrt{5}}{5}\approx 0.894427191
Share
Copied to clipboard
2\times \frac{2\sqrt{3}}{5}\times \frac{\sqrt{30}}{6\sqrt{2}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\times \frac{2\sqrt{3}}{5}\times \frac{\sqrt{30}\sqrt{2}}{6\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{30}}{6\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\times \frac{2\sqrt{3}}{5}\times \frac{\sqrt{30}\sqrt{2}}{6\times 2}
The square of \sqrt{2} is 2.
2\times \frac{2\sqrt{3}}{5}\times \frac{\sqrt{2}\sqrt{15}\sqrt{2}}{6\times 2}
Factor 30=2\times 15. Rewrite the square root of the product \sqrt{2\times 15} as the product of square roots \sqrt{2}\sqrt{15}.
2\times \frac{2\sqrt{3}}{5}\times \frac{2\sqrt{15}}{6\times 2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\times \frac{2\sqrt{3}}{5}\times \frac{2\sqrt{15}}{12}
Multiply 6 and 2 to get 12.
2\times \frac{2\sqrt{3}}{5}\times \frac{1}{6}\sqrt{15}
Divide 2\sqrt{15} by 12 to get \frac{1}{6}\sqrt{15}.
\frac{2}{6}\times \frac{2\sqrt{3}}{5}\sqrt{15}
Multiply 2 and \frac{1}{6} to get \frac{2}{6}.
\frac{1}{3}\times \frac{2\sqrt{3}}{5}\sqrt{15}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{2\sqrt{3}}{3\times 5}\sqrt{15}
Multiply \frac{1}{3} times \frac{2\sqrt{3}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2\sqrt{3}\sqrt{15}}{3\times 5}
Express \frac{2\sqrt{3}}{3\times 5}\sqrt{15} as a single fraction.
\frac{2\sqrt{3}\sqrt{3}\sqrt{5}}{3\times 5}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{2\times 3\sqrt{5}}{3\times 5}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6\sqrt{5}}{3\times 5}
Multiply 2 and 3 to get 6.
\frac{6\sqrt{5}}{15}
Multiply 3 and 5 to get 15.
\frac{2}{5}\sqrt{5}
Divide 6\sqrt{5} by 15 to get \frac{2}{5}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}