Solve for α
\alpha =\frac{9}{4}=2.25
Share
Copied to clipboard
2\alpha -11-\left(-2\alpha \right)=5\left(2-\alpha \right)-\alpha -2\left(\alpha -3\right)
To find the opposite of 11-2\alpha , find the opposite of each term.
2\alpha -11+2\alpha =5\left(2-\alpha \right)-\alpha -2\left(\alpha -3\right)
The opposite of -2\alpha is 2\alpha .
4\alpha -11=5\left(2-\alpha \right)-\alpha -2\left(\alpha -3\right)
Combine 2\alpha and 2\alpha to get 4\alpha .
4\alpha -11=10-5\alpha -\alpha -2\left(\alpha -3\right)
Use the distributive property to multiply 5 by 2-\alpha .
4\alpha -11=10-6\alpha -2\left(\alpha -3\right)
Combine -5\alpha and -\alpha to get -6\alpha .
4\alpha -11=10-6\alpha -2\alpha +6
Use the distributive property to multiply -2 by \alpha -3.
4\alpha -11=10-8\alpha +6
Combine -6\alpha and -2\alpha to get -8\alpha .
4\alpha -11=16-8\alpha
Add 10 and 6 to get 16.
4\alpha -11+8\alpha =16
Add 8\alpha to both sides.
12\alpha -11=16
Combine 4\alpha and 8\alpha to get 12\alpha .
12\alpha =16+11
Add 11 to both sides.
12\alpha =27
Add 16 and 11 to get 27.
\alpha =\frac{27}{12}
Divide both sides by 12.
\alpha =\frac{9}{4}
Reduce the fraction \frac{27}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}