Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(\alpha ^{5}+8\alpha ^{2}\beta ^{3}\right)
Factor out 2.
\alpha ^{2}\left(\alpha ^{3}+8\beta ^{3}\right)
Consider \alpha ^{5}+8\alpha ^{2}\beta ^{3}. Factor out \alpha ^{2}.
\left(\alpha +2\beta \right)\left(\alpha ^{2}-2\alpha \beta +4\beta ^{2}\right)
Consider \alpha ^{3}+8\beta ^{3}. Rewrite \alpha ^{3}+8\beta ^{3} as \alpha ^{3}+\left(2\beta \right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
2\alpha ^{2}\left(\alpha +2\beta \right)\left(\alpha ^{2}-2\alpha \beta +4\beta ^{2}\right)
Rewrite the complete factored expression.