Solve for n
n>\frac{4053}{13}
Share
Copied to clipboard
2\times 2020-13\left(n-1\right)<0
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same. Zero divided by any non-zero number gives zero.
4040-13\left(n-1\right)<0
Multiply 2 and 2020 to get 4040.
4040-13n+13<0
Use the distributive property to multiply -13 by n-1.
4053-13n<0
Add 4040 and 13 to get 4053.
-13n<-4053
Subtract 4053 from both sides. Anything subtracted from zero gives its negation.
n>\frac{-4053}{-13}
Divide both sides by -13. Since -13 is negative, the inequality direction is changed.
n>\frac{4053}{13}
Fraction \frac{-4053}{-13} can be simplified to \frac{4053}{13} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}