Solve for a
a\in \left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt[4]{36\sqrt{2}+56},\left(\frac{1}{2}-\frac{1}{2}i\right)\sqrt[4]{36\sqrt{2}+56},\left(-\frac{1}{2}+\frac{1}{2}i\right)\sqrt[4]{36\sqrt{2}+56},\left(-\frac{1}{2}-\frac{1}{2}i\right)\sqrt[4]{36\sqrt{2}+56},\left(\frac{1}{2}-\frac{1}{2}i\right)\sqrt[4]{56-36\sqrt{2}},\left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt[4]{56-36\sqrt{2}},\left(-\frac{1}{2}+\frac{1}{2}i\right)\sqrt[4]{56-36\sqrt{2}},\left(-\frac{1}{2}-\frac{1}{2}i\right)\sqrt[4]{56-36\sqrt{2}}
Share
Copied to clipboard
a^{8}+28a^{4}+36=2
Swap sides so that all variable terms are on the left hand side.
a^{8}+28a^{4}+36-2=0
Subtract 2 from both sides.
a^{8}+28a^{4}+34=0
Subtract 2 from 36 to get 34.
t^{2}+28t+34=0
Substitute t for a^{4}.
t=\frac{-28±\sqrt{28^{2}-4\times 1\times 34}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 28 for b, and 34 for c in the quadratic formula.
t=\frac{-28±18\sqrt{2}}{2}
Do the calculations.
t=9\sqrt{2}-14 t=-9\sqrt{2}-14
Solve the equation t=\frac{-28±18\sqrt{2}}{2} when ± is plus and when ± is minus.
a=\left(\frac{1}{2}-\frac{1}{2}i\right)\sqrt[4]{56-36\sqrt{2}} a=\left(-\frac{1}{2}-\frac{1}{2}i\right)\sqrt[4]{56-36\sqrt{2}} a=\left(-\frac{1}{2}+\frac{1}{2}i\right)\sqrt[4]{56-36\sqrt{2}} a=\left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt[4]{56-36\sqrt{2}} a=\left(\frac{1}{2}-\frac{1}{2}i\right)\sqrt[4]{36\sqrt{2}+56} a=\left(-\frac{1}{2}-\frac{1}{2}i\right)\sqrt[4]{36\sqrt{2}+56} a=\left(-\frac{1}{2}+\frac{1}{2}i\right)\sqrt[4]{36\sqrt{2}+56} a=\left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt[4]{36\sqrt{2}+56}
Since a=t^{4}, the solutions are obtained by solving the equation for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}