Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{5}=t^{2}
Divide both sides by 5.
t^{2}=\frac{2}{5}
Swap sides so that all variable terms are on the left hand side.
t=\frac{\sqrt{10}}{5} t=-\frac{\sqrt{10}}{5}
Take the square root of both sides of the equation.
\frac{2}{5}=t^{2}
Divide both sides by 5.
t^{2}=\frac{2}{5}
Swap sides so that all variable terms are on the left hand side.
t^{2}-\frac{2}{5}=0
Subtract \frac{2}{5} from both sides.
t=\frac{0±\sqrt{0^{2}-4\left(-\frac{2}{5}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{2}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-\frac{2}{5}\right)}}{2}
Square 0.
t=\frac{0±\sqrt{\frac{8}{5}}}{2}
Multiply -4 times -\frac{2}{5}.
t=\frac{0±\frac{2\sqrt{10}}{5}}{2}
Take the square root of \frac{8}{5}.
t=\frac{\sqrt{10}}{5}
Now solve the equation t=\frac{0±\frac{2\sqrt{10}}{5}}{2} when ± is plus.
t=-\frac{\sqrt{10}}{5}
Now solve the equation t=\frac{0±\frac{2\sqrt{10}}{5}}{2} when ± is minus.
t=\frac{\sqrt{10}}{5} t=-\frac{\sqrt{10}}{5}
The equation is now solved.