Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

2t-\frac{3}{2}t^{2}=2
Swap sides so that all variable terms are on the left hand side.
2t-\frac{3}{2}t^{2}-2=0
Subtract 2 from both sides.
-\frac{3}{2}t^{2}+2t-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-2±\sqrt{2^{2}-4\left(-\frac{3}{2}\right)\left(-2\right)}}{2\left(-\frac{3}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{2} for a, 2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2±\sqrt{4-4\left(-\frac{3}{2}\right)\left(-2\right)}}{2\left(-\frac{3}{2}\right)}
Square 2.
t=\frac{-2±\sqrt{4+6\left(-2\right)}}{2\left(-\frac{3}{2}\right)}
Multiply -4 times -\frac{3}{2}.
t=\frac{-2±\sqrt{4-12}}{2\left(-\frac{3}{2}\right)}
Multiply 6 times -2.
t=\frac{-2±\sqrt{-8}}{2\left(-\frac{3}{2}\right)}
Add 4 to -12.
t=\frac{-2±2\sqrt{2}i}{2\left(-\frac{3}{2}\right)}
Take the square root of -8.
t=\frac{-2±2\sqrt{2}i}{-3}
Multiply 2 times -\frac{3}{2}.
t=\frac{-2+2\sqrt{2}i}{-3}
Now solve the equation t=\frac{-2±2\sqrt{2}i}{-3} when ± is plus. Add -2 to 2i\sqrt{2}.
t=\frac{-2\sqrt{2}i+2}{3}
Divide -2+2i\sqrt{2} by -3.
t=\frac{-2\sqrt{2}i-2}{-3}
Now solve the equation t=\frac{-2±2\sqrt{2}i}{-3} when ± is minus. Subtract 2i\sqrt{2} from -2.
t=\frac{2+2\sqrt{2}i}{3}
Divide -2-2i\sqrt{2} by -3.
t=\frac{-2\sqrt{2}i+2}{3} t=\frac{2+2\sqrt{2}i}{3}
The equation is now solved.
2t-\frac{3}{2}t^{2}=2
Swap sides so that all variable terms are on the left hand side.
-\frac{3}{2}t^{2}+2t=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{3}{2}t^{2}+2t}{-\frac{3}{2}}=\frac{2}{-\frac{3}{2}}
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{2}{-\frac{3}{2}}t=\frac{2}{-\frac{3}{2}}
Dividing by -\frac{3}{2} undoes the multiplication by -\frac{3}{2}.
t^{2}-\frac{4}{3}t=\frac{2}{-\frac{3}{2}}
Divide 2 by -\frac{3}{2} by multiplying 2 by the reciprocal of -\frac{3}{2}.
t^{2}-\frac{4}{3}t=-\frac{4}{3}
Divide 2 by -\frac{3}{2} by multiplying 2 by the reciprocal of -\frac{3}{2}.
t^{2}-\frac{4}{3}t+\left(-\frac{2}{3}\right)^{2}=-\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{4}{3}t+\frac{4}{9}=-\frac{4}{3}+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{4}{3}t+\frac{4}{9}=-\frac{8}{9}
Add -\frac{4}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{2}{3}\right)^{2}=-\frac{8}{9}
Factor t^{2}-\frac{4}{3}t+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{2}{3}\right)^{2}}=\sqrt{-\frac{8}{9}}
Take the square root of both sides of the equation.
t-\frac{2}{3}=\frac{2\sqrt{2}i}{3} t-\frac{2}{3}=-\frac{2\sqrt{2}i}{3}
Simplify.
t=\frac{2+2\sqrt{2}i}{3} t=\frac{-2\sqrt{2}i+2}{3}
Add \frac{2}{3} to both sides of the equation.