Solve for S
S=\frac{2r_{1}r_{2}}{r_{1}+r_{2}}
r_{1}\neq -r_{2}\text{ and }r_{1}\neq 0\text{ and }r_{2}\neq 0
Solve for r_1
r_{1}=-\frac{Sr_{2}}{S-2r_{2}}
r_{2}\neq 0\text{ and }S\neq 0\text{ and }S\neq 2r_{2}
Share
Copied to clipboard
2r_{1}r_{2}=r_{2}S+r_{1}S
Multiply both sides of the equation by r_{1}r_{2}, the least common multiple of r_{1},r_{2}.
r_{2}S+r_{1}S=2r_{1}r_{2}
Swap sides so that all variable terms are on the left hand side.
\left(r_{2}+r_{1}\right)S=2r_{1}r_{2}
Combine all terms containing S.
\left(r_{1}+r_{2}\right)S=2r_{1}r_{2}
The equation is in standard form.
\frac{\left(r_{1}+r_{2}\right)S}{r_{1}+r_{2}}=\frac{2r_{1}r_{2}}{r_{1}+r_{2}}
Divide both sides by r_{2}+r_{1}.
S=\frac{2r_{1}r_{2}}{r_{1}+r_{2}}
Dividing by r_{2}+r_{1} undoes the multiplication by r_{2}+r_{1}.
2r_{1}r_{2}=r_{2}S+r_{1}S
Variable r_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by r_{1}r_{2}, the least common multiple of r_{1},r_{2}.
2r_{1}r_{2}-r_{1}S=r_{2}S
Subtract r_{1}S from both sides.
\left(2r_{2}-S\right)r_{1}=r_{2}S
Combine all terms containing r_{1}.
\left(2r_{2}-S\right)r_{1}=Sr_{2}
The equation is in standard form.
\frac{\left(2r_{2}-S\right)r_{1}}{2r_{2}-S}=\frac{Sr_{2}}{2r_{2}-S}
Divide both sides by 2r_{2}-S.
r_{1}=\frac{Sr_{2}}{2r_{2}-S}
Dividing by 2r_{2}-S undoes the multiplication by 2r_{2}-S.
r_{1}=\frac{Sr_{2}}{2r_{2}-S}\text{, }r_{1}\neq 0
Variable r_{1} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}