Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(x-2\right)\left(2x-1\right)=\left(4x-2\right)\times 3-\left(x-2\right)\left(x-13\right)
Variable x cannot be equal to any of the values \frac{1}{2},2 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-2\right)\left(2x-1\right), the least common multiple of x-2,4x-2.
\left(4x-8\right)\left(2x-1\right)=\left(4x-2\right)\times 3-\left(x-2\right)\left(x-13\right)
Use the distributive property to multiply 4 by x-2.
8x^{2}-20x+8=\left(4x-2\right)\times 3-\left(x-2\right)\left(x-13\right)
Use the distributive property to multiply 4x-8 by 2x-1 and combine like terms.
8x^{2}-20x+8=12x-6-\left(x-2\right)\left(x-13\right)
Use the distributive property to multiply 4x-2 by 3.
8x^{2}-20x+8=12x-6-\left(x^{2}-15x+26\right)
Use the distributive property to multiply x-2 by x-13 and combine like terms.
8x^{2}-20x+8=12x-6-x^{2}+15x-26
To find the opposite of x^{2}-15x+26, find the opposite of each term.
8x^{2}-20x+8=27x-6-x^{2}-26
Combine 12x and 15x to get 27x.
8x^{2}-20x+8=27x-32-x^{2}
Subtract 26 from -6 to get -32.
8x^{2}-20x+8-27x=-32-x^{2}
Subtract 27x from both sides.
8x^{2}-47x+8=-32-x^{2}
Combine -20x and -27x to get -47x.
8x^{2}-47x+8-\left(-32\right)=-x^{2}
Subtract -32 from both sides.
8x^{2}-47x+8+32=-x^{2}
The opposite of -32 is 32.
8x^{2}-47x+8+32+x^{2}=0
Add x^{2} to both sides.
8x^{2}-47x+40+x^{2}=0
Add 8 and 32 to get 40.
9x^{2}-47x+40=0
Combine 8x^{2} and x^{2} to get 9x^{2}.
x=\frac{-\left(-47\right)±\sqrt{\left(-47\right)^{2}-4\times 9\times 40}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -47 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-47\right)±\sqrt{2209-4\times 9\times 40}}{2\times 9}
Square -47.
x=\frac{-\left(-47\right)±\sqrt{2209-36\times 40}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-47\right)±\sqrt{2209-1440}}{2\times 9}
Multiply -36 times 40.
x=\frac{-\left(-47\right)±\sqrt{769}}{2\times 9}
Add 2209 to -1440.
x=\frac{47±\sqrt{769}}{2\times 9}
The opposite of -47 is 47.
x=\frac{47±\sqrt{769}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{769}+47}{18}
Now solve the equation x=\frac{47±\sqrt{769}}{18} when ± is plus. Add 47 to \sqrt{769}.
x=\frac{47-\sqrt{769}}{18}
Now solve the equation x=\frac{47±\sqrt{769}}{18} when ± is minus. Subtract \sqrt{769} from 47.
x=\frac{\sqrt{769}+47}{18} x=\frac{47-\sqrt{769}}{18}
The equation is now solved.
4\left(x-2\right)\left(2x-1\right)=\left(4x-2\right)\times 3-\left(x-2\right)\left(x-13\right)
Variable x cannot be equal to any of the values \frac{1}{2},2 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-2\right)\left(2x-1\right), the least common multiple of x-2,4x-2.
\left(4x-8\right)\left(2x-1\right)=\left(4x-2\right)\times 3-\left(x-2\right)\left(x-13\right)
Use the distributive property to multiply 4 by x-2.
8x^{2}-20x+8=\left(4x-2\right)\times 3-\left(x-2\right)\left(x-13\right)
Use the distributive property to multiply 4x-8 by 2x-1 and combine like terms.
8x^{2}-20x+8=12x-6-\left(x-2\right)\left(x-13\right)
Use the distributive property to multiply 4x-2 by 3.
8x^{2}-20x+8=12x-6-\left(x^{2}-15x+26\right)
Use the distributive property to multiply x-2 by x-13 and combine like terms.
8x^{2}-20x+8=12x-6-x^{2}+15x-26
To find the opposite of x^{2}-15x+26, find the opposite of each term.
8x^{2}-20x+8=27x-6-x^{2}-26
Combine 12x and 15x to get 27x.
8x^{2}-20x+8=27x-32-x^{2}
Subtract 26 from -6 to get -32.
8x^{2}-20x+8-27x=-32-x^{2}
Subtract 27x from both sides.
8x^{2}-47x+8=-32-x^{2}
Combine -20x and -27x to get -47x.
8x^{2}-47x+8+x^{2}=-32
Add x^{2} to both sides.
9x^{2}-47x+8=-32
Combine 8x^{2} and x^{2} to get 9x^{2}.
9x^{2}-47x=-32-8
Subtract 8 from both sides.
9x^{2}-47x=-40
Subtract 8 from -32 to get -40.
\frac{9x^{2}-47x}{9}=-\frac{40}{9}
Divide both sides by 9.
x^{2}-\frac{47}{9}x=-\frac{40}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{47}{9}x+\left(-\frac{47}{18}\right)^{2}=-\frac{40}{9}+\left(-\frac{47}{18}\right)^{2}
Divide -\frac{47}{9}, the coefficient of the x term, by 2 to get -\frac{47}{18}. Then add the square of -\frac{47}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{47}{9}x+\frac{2209}{324}=-\frac{40}{9}+\frac{2209}{324}
Square -\frac{47}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{47}{9}x+\frac{2209}{324}=\frac{769}{324}
Add -\frac{40}{9} to \frac{2209}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{47}{18}\right)^{2}=\frac{769}{324}
Factor x^{2}-\frac{47}{9}x+\frac{2209}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{47}{18}\right)^{2}}=\sqrt{\frac{769}{324}}
Take the square root of both sides of the equation.
x-\frac{47}{18}=\frac{\sqrt{769}}{18} x-\frac{47}{18}=-\frac{\sqrt{769}}{18}
Simplify.
x=\frac{\sqrt{769}+47}{18} x=\frac{47-\sqrt{769}}{18}
Add \frac{47}{18} to both sides of the equation.