Solve for t
t=-x+\frac{2}{z}
z\neq 0
Solve for x
x=-t+\frac{2}{z}
z\neq 0
Share
Copied to clipboard
z\times 2+xz=\left(t+x\right)zz+xz
Multiply both sides of the equation by z.
z\times 2+xz=\left(t+x\right)z^{2}+xz
Multiply z and z to get z^{2}.
z\times 2+xz=tz^{2}+xz^{2}+xz
Use the distributive property to multiply t+x by z^{2}.
tz^{2}+xz^{2}+xz=z\times 2+xz
Swap sides so that all variable terms are on the left hand side.
tz^{2}+xz=z\times 2+xz-xz^{2}
Subtract xz^{2} from both sides.
tz^{2}=z\times 2+xz-xz^{2}-xz
Subtract xz from both sides.
tz^{2}=z\times 2-xz^{2}
Combine xz and -xz to get 0.
z^{2}t=2z-xz^{2}
The equation is in standard form.
\frac{z^{2}t}{z^{2}}=\frac{z\left(2-xz\right)}{z^{2}}
Divide both sides by z^{2}.
t=\frac{z\left(2-xz\right)}{z^{2}}
Dividing by z^{2} undoes the multiplication by z^{2}.
t=-x+\frac{2}{z}
Divide z\left(2-xz\right) by z^{2}.
z\times 2+xz=\left(t+x\right)zz+xz
Multiply both sides of the equation by z.
z\times 2+xz=\left(t+x\right)z^{2}+xz
Multiply z and z to get z^{2}.
z\times 2+xz=tz^{2}+xz^{2}+xz
Use the distributive property to multiply t+x by z^{2}.
z\times 2+xz-xz^{2}=tz^{2}+xz
Subtract xz^{2} from both sides.
z\times 2+xz-xz^{2}-xz=tz^{2}
Subtract xz from both sides.
z\times 2-xz^{2}=tz^{2}
Combine xz and -xz to get 0.
-xz^{2}=tz^{2}-z\times 2
Subtract z\times 2 from both sides.
\left(-z^{2}\right)x=tz^{2}-2z
The equation is in standard form.
\frac{\left(-z^{2}\right)x}{-z^{2}}=\frac{z\left(tz-2\right)}{-z^{2}}
Divide both sides by -z^{2}.
x=\frac{z\left(tz-2\right)}{-z^{2}}
Dividing by -z^{2} undoes the multiplication by -z^{2}.
x=-t+\frac{2}{z}
Divide z\left(tz-2\right) by -z^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}