Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

-10r^{2}+5r+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-5±\sqrt{5^{2}-4\left(-10\right)\times 2}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 5 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-5±\sqrt{25-4\left(-10\right)\times 2}}{2\left(-10\right)}
Square 5.
r=\frac{-5±\sqrt{25+40\times 2}}{2\left(-10\right)}
Multiply -4 times -10.
r=\frac{-5±\sqrt{25+80}}{2\left(-10\right)}
Multiply 40 times 2.
r=\frac{-5±\sqrt{105}}{2\left(-10\right)}
Add 25 to 80.
r=\frac{-5±\sqrt{105}}{-20}
Multiply 2 times -10.
r=\frac{\sqrt{105}-5}{-20}
Now solve the equation r=\frac{-5±\sqrt{105}}{-20} when ± is plus. Add -5 to \sqrt{105}.
r=-\frac{\sqrt{105}}{20}+\frac{1}{4}
Divide -5+\sqrt{105} by -20.
r=\frac{-\sqrt{105}-5}{-20}
Now solve the equation r=\frac{-5±\sqrt{105}}{-20} when ± is minus. Subtract \sqrt{105} from -5.
r=\frac{\sqrt{105}}{20}+\frac{1}{4}
Divide -5-\sqrt{105} by -20.
r=-\frac{\sqrt{105}}{20}+\frac{1}{4} r=\frac{\sqrt{105}}{20}+\frac{1}{4}
The equation is now solved.
-10r^{2}+5r+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-10r^{2}+5r+2-2=-2
Subtract 2 from both sides of the equation.
-10r^{2}+5r=-2
Subtracting 2 from itself leaves 0.
\frac{-10r^{2}+5r}{-10}=-\frac{2}{-10}
Divide both sides by -10.
r^{2}+\frac{5}{-10}r=-\frac{2}{-10}
Dividing by -10 undoes the multiplication by -10.
r^{2}-\frac{1}{2}r=-\frac{2}{-10}
Reduce the fraction \frac{5}{-10} to lowest terms by extracting and canceling out 5.
r^{2}-\frac{1}{2}r=\frac{1}{5}
Reduce the fraction \frac{-2}{-10} to lowest terms by extracting and canceling out 2.
r^{2}-\frac{1}{2}r+\left(-\frac{1}{4}\right)^{2}=\frac{1}{5}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-\frac{1}{2}r+\frac{1}{16}=\frac{1}{5}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
r^{2}-\frac{1}{2}r+\frac{1}{16}=\frac{21}{80}
Add \frac{1}{5} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(r-\frac{1}{4}\right)^{2}=\frac{21}{80}
Factor r^{2}-\frac{1}{2}r+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{1}{4}\right)^{2}}=\sqrt{\frac{21}{80}}
Take the square root of both sides of the equation.
r-\frac{1}{4}=\frac{\sqrt{105}}{20} r-\frac{1}{4}=-\frac{\sqrt{105}}{20}
Simplify.
r=\frac{\sqrt{105}}{20}+\frac{1}{4} r=-\frac{\sqrt{105}}{20}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.