Solve for x
x = \frac{\sqrt{41} + 3}{8} \approx 1.17539053
x=\frac{3-\sqrt{41}}{8}\approx -0.42539053
Graph
Share
Copied to clipboard
-4x^{2}+3x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 3 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-4\right)\times 2}}{2\left(-4\right)}
Square 3.
x=\frac{-3±\sqrt{9+16\times 2}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-3±\sqrt{9+32}}{2\left(-4\right)}
Multiply 16 times 2.
x=\frac{-3±\sqrt{41}}{2\left(-4\right)}
Add 9 to 32.
x=\frac{-3±\sqrt{41}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{41}-3}{-8}
Now solve the equation x=\frac{-3±\sqrt{41}}{-8} when ± is plus. Add -3 to \sqrt{41}.
x=\frac{3-\sqrt{41}}{8}
Divide -3+\sqrt{41} by -8.
x=\frac{-\sqrt{41}-3}{-8}
Now solve the equation x=\frac{-3±\sqrt{41}}{-8} when ± is minus. Subtract \sqrt{41} from -3.
x=\frac{\sqrt{41}+3}{8}
Divide -3-\sqrt{41} by -8.
x=\frac{3-\sqrt{41}}{8} x=\frac{\sqrt{41}+3}{8}
The equation is now solved.
-4x^{2}+3x+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-4x^{2}+3x+2-2=-2
Subtract 2 from both sides of the equation.
-4x^{2}+3x=-2
Subtracting 2 from itself leaves 0.
\frac{-4x^{2}+3x}{-4}=-\frac{2}{-4}
Divide both sides by -4.
x^{2}+\frac{3}{-4}x=-\frac{2}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{3}{4}x=-\frac{2}{-4}
Divide 3 by -4.
x^{2}-\frac{3}{4}x=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
Add \frac{1}{2} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{8}\right)^{2}=\frac{41}{64}
Factor x^{2}-\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
Take the square root of both sides of the equation.
x-\frac{3}{8}=\frac{\sqrt{41}}{8} x-\frac{3}{8}=-\frac{\sqrt{41}}{8}
Simplify.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
Add \frac{3}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}