Solve for b
b=1
Share
Copied to clipboard
2+3b+3-\left(b+1\right)\times 3-2b=0
Use the distributive property to multiply 3 by b+1.
5+3b-\left(b+1\right)\times 3-2b=0
Add 2 and 3 to get 5.
5+3b-\left(3b+3\right)-2b=0
Use the distributive property to multiply b+1 by 3.
5+3b-3b-3-2b=0
To find the opposite of 3b+3, find the opposite of each term.
5-3-2b=0
Combine 3b and -3b to get 0.
2-2b=0
Subtract 3 from 5 to get 2.
-2b=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
b=\frac{-2}{-2}
Divide both sides by -2.
b=1
Divide -2 by -2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}