Solve for x
x=-\frac{2\left(1-6y\right)}{2-145y}
y\neq \frac{2}{145}
Solve for y
y=\frac{2\left(x+1\right)}{145x+12}
x\neq -\frac{12}{145}
Graph
Share
Copied to clipboard
2+2x-145xy=12y
Subtract 145xy from both sides.
2x-145xy=12y-2
Subtract 2 from both sides.
\left(2-145y\right)x=12y-2
Combine all terms containing x.
\frac{\left(2-145y\right)x}{2-145y}=\frac{12y-2}{2-145y}
Divide both sides by -145y+2.
x=\frac{12y-2}{2-145y}
Dividing by -145y+2 undoes the multiplication by -145y+2.
x=\frac{2\left(6y-1\right)}{2-145y}
Divide 12y-2 by -145y+2.
145xy+12y=2+2x
Swap sides so that all variable terms are on the left hand side.
\left(145x+12\right)y=2+2x
Combine all terms containing y.
\left(145x+12\right)y=2x+2
The equation is in standard form.
\frac{\left(145x+12\right)y}{145x+12}=\frac{2x+2}{145x+12}
Divide both sides by 12+145x.
y=\frac{2x+2}{145x+12}
Dividing by 12+145x undoes the multiplication by 12+145x.
y=\frac{2\left(x+1\right)}{145x+12}
Divide 2+2x by 12+145x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}