Solve for a
a=\frac{2\left(k^{2}+1\right)}{3b^{2}}
b\neq 0
Solve for b
b=\frac{\sqrt{\frac{6\left(k^{2}+1\right)}{a}}}{3}
b=-\frac{\sqrt{\frac{6\left(k^{2}+1\right)}{a}}}{3}\text{, }a>0
Share
Copied to clipboard
3ab^{2}=2+2k^{2}
Swap sides so that all variable terms are on the left hand side.
3b^{2}a=2k^{2}+2
The equation is in standard form.
\frac{3b^{2}a}{3b^{2}}=\frac{2k^{2}+2}{3b^{2}}
Divide both sides by 3b^{2}.
a=\frac{2k^{2}+2}{3b^{2}}
Dividing by 3b^{2} undoes the multiplication by 3b^{2}.
a=\frac{2\left(k^{2}+1\right)}{3b^{2}}
Divide 2+2k^{2} by 3b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}